Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37801044

RESUMEN

Aging is associated with cognitive decline via incompletely understood mechanisms. Cerebral microvascular dysfunction occurs in aging, particularly impaired endothelium-mediated dilation. Parenchymal arterioles are bottlenecks of the cerebral microcirculation, and dysfunction causes a mismatch in nutrient demand and delivery, leaving neurons at risk. Extracellular nucleotides elicit parenchymal arteriole dilation by activating endothelial purinergic receptors (P2Y), leading to opening of K+ channels, including inwardly-rectifying K+ channels (KIR2). These channels amplify hyperpolarizing signals, resulting in dilation. However, it remains unknown if endothelial P2Y and KIR2 signaling are altered in brain parenchymal arterioles during aging. We hypothesized that aging impairs endothelial P2Y and KIR2 function in parenchymal arterioles. We observed reduced dilation to the purinergic agonist 2-methyl-S-ADP (1 µM) in arterioles from Aged (>24-month-old) mice when compared to Young (4-6 months of age) despite similar hyperpolarization in endothelial cells tubes. No differences were observed in vasodilation or endothelial cell hyperpolarization to activation of small- and intermediate-conductance Ca2+-activated K+ channels (KCa2.3 / KCa3.1) by NS309. Hyperpolarization to 15 mM [K+]E was smaller in Aged than Young mice, despite a paradoxical increased dilation in Aged arterioles to 15 mM [K+]E that was unchanged by endothelium removal. KIR2 Inhibition attenuated vasodilatory responses to 15 mM [K+]E and 1 µM 2-me-S-ADP in both Young and Aged arterioles. Further, we observed a significant increase in myogenic tone in Aged parenchymal arterioles, which was not enhanced by endothelium removal. We conclude that aging impairs endothelial KIR2 channel function in the cerebral microcirculation with possible compensation by smooth muscle cells.

2.
Microcirculation ; 30(1): e12797, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36577656

RESUMEN

OBJECTIVE: Endothelial cell (EC) coupling occurs through gap junctions and underlies cerebral blood flow regulation governed by inward-rectifying K+ (KIR ) channels. This study addressed effects of KIR channel activity on EC coupling before and during Alzheimer's disease (AD). METHODS: Intact EC tubes (width: ~90-100 µm; length: ~0.5 mm) were freshly isolated from posterior cerebral arteries of young Pre-AD (1-3 months) and aged AD (13-18 months) male and female 3xTg-AD mice. Dual intracellular microelectrodes applied simultaneous current injections (±0.5-3 nA) and membrane potential (Vm ) recordings in ECs at distance ~400 µm. Elevated extracellular potassium ([K+ ]E ; 8-15 mmol/L; reference, 5 mmol/L) activated KIR channels. RESULTS: Conducted Vm (∆Vm ) responses ranged from ~-30 to 30 mV in response to -3 to +3 nA (linear regression, R2 ≥ .99) while lacking rectification for charge polarity or axial direction of spread. Conduction slope decreased ~10%-20% during 15 mmol/L [K+ ]E in Pre-AD males and AD females. 15 mmol/L [K+ ]E decreased conduction by ~10%-20% at lower ∆Vm thresholds in AD animals (~±20 mV) versus Pre-AD (~±25 mV). AD increased conducted hyperpolarization by ~10%-15% during 8-12 mmol/L [K+ ]E . CONCLUSIONS: Brain endothelial KIR channel activity modulates bidirectional spread of vasoreactive signals with enhanced regulation of EC coupling during AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Masculino , Femenino , Animales , Ratones , Células Endoteliales/metabolismo , Uniones Comunicantes/metabolismo , Endotelio Vascular/metabolismo , Potenciales de la Membrana
3.
J Vis Exp ; (181)2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35343953

RESUMEN

Cerebral blood flow is conveyed by vascular resistance arteries and downstream parenchymal arterioles. Steady-state vascular resistance to blood flow increases with decreasing diameter from arteries to arterioles that ultimately feed into capillaries. Due to their smaller size and location in the parenchyma, arterioles have been relatively understudied and with less reproducibility in findings than surface pial arteries. Regardless, arteriolar endothelial cell structure and function-integral to the physiology and etiology of chronic degenerative diseases-requires extensive investigation. In particular, emerging evidence demonstrates that compromised endothelial function precedes and exacerbates cognitive impairment and dementia. In the parenchymal microcirculation, endothelial K+ channel function is the most robust stimulus to finely control the spread of vasodilation to promote increases in blood flow to areas of neuronal activity. This paper illustrates a refined method for freshly isolating intact and electrically coupled endothelial "tubes" (diameter, ~25 µm) from mouse brain parenchymal arterioles. Arteriolar endothelial tubes are secured during physiological conditions (37 °C, pH 7.4) to resolve experimental variables that encompass K+ channel function and their regulation, including intracellular Ca2+ dynamics, changes in membrane potential, and membrane lipid regulation. A distinct technical advantage versus arterial endothelium is the enhanced morphological resolution of cell and organelle (e.g., mitochondria) dimensions, which expands the usefulness of this technique. Healthy cerebral perfusion throughout life entails robust endothelial function in parenchymal arterioles, directly linking blood flow to the fueling of neuronal and glial activity throughout precise anatomical regions of the brain. Thus, it is expected that this method will significantly advance the general knowledge of vascular physiology and neuroscience concerning the healthy and diseased brain.


Asunto(s)
Endotelio Vascular , Vasodilatación , Animales , Arteriolas/fisiología , Encéfalo/irrigación sanguínea , Endotelio Vascular/metabolismo , Ratones , Reproducibilidad de los Resultados , Vasodilatación/fisiología
4.
J Alzheimers Dis ; 85(1): 91-113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34776451

RESUMEN

BACKGROUND: Emerging evidence demonstrates association of Alzheimer's disease (AD) with impaired delivery of blood oxygen and nutrients to and throughout the brain. The cerebral circulation plays multiple roles underscoring optimal brain perfusion and cognition entailing moment-to-moment blood flow control, vascular permeability, and angiogenesis. With currently no effective treatment to prevent or delay the progression of AD, cerebrovascular microRNA (miRNA) markers corresponding to post-transcriptional regulation may distinguish phases of AD. OBJECTIVE: We tested the hypothesis that cerebrovascular miRNA expression profiles indicate developmental stages of AD pathology. METHODS: Total RNA was isolated from total brain vessel segments of male and female 3xTg-AD mice [young, 1-2 mo; cognitive impairment (CI), 4-5 mo; extracellular amyloid-ß plaques (Aß), 6-8 mo; plaques+neurofibrillary tangles (AßT), 12-15 mo]. NanoString technology nCounter miRNA Expression panel for mouse was used to screen for 599 miRNAs. RESULTS: Significant (p < 0.05) downregulation of various miRNAs indicated transitions from young to CI (e.g., let-7g & miR-1944, males; miR-133a & miR-2140, females) and CI to Aß (e.g., miR-99a, males) but not from Aß to AßT. In addition, altered expression of select miRNAs from overall Pre-AD (young + CI) versus AD (Aß+ AßT) were detected in both males (let-7d, let-7i, miR-23a, miR-34b-3p, miR-99a, miR-126-3p, miR-132, miR-150, miR-151-5p, miR-181a) and females (miR-150, miR-539). Altogether, at least 20 cerebrovascular miRNAs effectively delineate AD versus Pre-AD pathology. CONCLUSION: Using the 3xTg-AD mouse model, these data demonstrate that cerebrovascular miRNAs pertaining to endothelial function, vascular permeability, angiogenesis, inflammation, and Aß/tau metabolism can track early development of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Disfunción Cognitiva/genética , MicroARNs/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Biomarcadores , Encéfalo/patología , Circulación Cerebrovascular/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , MicroARNs/metabolismo , Neovascularización Patológica , Caracteres Sexuales
5.
J Alzheimers Dis Rep ; 5(1): 693-703, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34755043

RESUMEN

BACKGROUND: As the sixth-leading cause of death in the United States, Alzheimer's disease (AD) entails deteriorating endothelial control of blood flow throughout the brain. In particular, reduced inward-rectifying K+ (KIR) channel function in animal models of aging and AD compromises endothelial function and optimal perfusion of brain parenchyma. Deficient endothelial KIR channels may result from aberrant interaction with plasma membrane cholesterol as a primary regulator of membrane fluidity and ion channels. OBJECTIVE: We tested the hypothesis that mild methyl-ß-cyclodextrin (MßCD) treatment to reduce membrane cholesterol may restore endothelial KIR channel function in brain endothelium of old AD mice. METHODS: Membrane potential was continuously measured in isolated endothelial tubes from posterior cerebral arteries of young (1 to 3 months) and old (16 to 19 months) female 3xTg-AD mice before and after mild treatment with the cholesterol-removing agent MßCD (1 mmol/L). Elevated extracellular potassium ([K+]E; 15 mmol/L) and NS309 (1µmol/L) activated KIR and Ca2+-activated K+ (SKCa/IKCa) channels respectively before and after MßCD treatment. RESULTS: SKCa/IKCa channel function for producing hyperpolarization remained stable regardless of age group and MßCD treatment (ΔVm: ∼-33 mV). However, as deficient during AD, KIR channel function was restored (ΔVm: -9±1 mV) versus pre-MßCD conditions (-5±1 mV); a progressive effect that reached -14±1 mV hyperpolarization at 60 min following MßCD washout. CONCLUSION: In female animals, MßCD treatment of brain endothelium selectively restores KIR versus SKCa/IKCa channel function during AD. Thus, the endothelial cholesterol-KIR channel interface is a novel target for ameliorating perfusion of the AD brain.

6.
Plants (Basel) ; 10(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068273

RESUMEN

Spot blotch (SB) disease caused by the hemibiotrophic pathogen Bipolaris sorokiniana inflicting major losses to the wheat grown in warm and highly humid areas of the Indian subcontinent, including Bangladesh, necessitates identification of QTLs stably expressing in Indian subcontinent conditions. Thus, two RIL mapping populations, i.e., WC (WUYA × CIANO T79) and KC (KATH × CIANO T79), were phenotyped at Dinajpur, Bangladesh for three consecutive years (2013-2015) and genotyped on a DArTseq genotyping by sequencing (GBS) platform at CIMMYT, Mexico. In both populations, quantitative inheritance along with transgressive segregation for SB resistance was identified. The identified QTLs were mostly minor and were detected on 10 chromosomes, i.e., 1A, 1B, 2A, 2B, 2D, 4B, 4D, 5A, 5D, and 7B. The phenotypic variation explained by the identified QTLs ranged from 2.3-15.0%, whereby QTLs on 4B (13.7%) and 5D (15.0%) were the largest in effect. The identified QTLs upon stacking showed an additive effect in lowering the SB score in both populations. The probable presence of newly identified Sb4 and durable resistance gene Lr46 in the identified QTL regions indicates the importance of these genes in breeding for SB resistance in Bangladesh and the whole of South Asia.

7.
J Alzheimers Dis ; 76(4): 1423-1442, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32651315

RESUMEN

BACKGROUND: Development of Alzheimer's disease (AD) pathology is associated with impaired blood flow delivery of oxygen and nutrients throughout the brain. Cerebrovascular endothelium regulates vasoreactivity of blood vessel networks for optimal cerebral blood flow. OBJECTIVE: We tested the hypothesis that cerebrovascular endothelial Gq-protein-coupled receptor (GPCR; purinergic and muscarinic) and K+ channel [Ca2+-activated (KCa2.3/SK3 and KCa3.1/IK1) and inward-rectifying (KIR2.x)] function declines during progressive AD pathology. METHODS: We applied simultaneous measurements of intracellular Ca2+ ([Ca2+]i) and membrane potential (Vm) in freshly isolated endothelium from posterior cerebral arteries of 3×Tg-AD mice [young, no pathology (1- 2 mo), cognitive impairment (CI; 4- 5 mo), extracellular Aß plaques (Aß; 6- 8 mo), and Aß plaques + neurofibrillary tangles (AßT; 12- 15 mo)]. RESULTS: The coupling of ΔVm-to-Δ[Ca2+]i during AßT pathology was lowest for both sexes but, overall, ATP-induced purinergic receptor function was stable throughout AD pathology. SKCa/IKCa channel function itself was enhanced by ∼20% during AD (Aß+ AßT) versus pre-AD (Young + CI) in males while steady in females. Accordingly, hyperpolarization-induced [Ca2+]i increases following SKCa/IKCa channel activation and Δ[Ca2+]i-to-ΔVm coupling was enhanced by ≥two-fold during AD pathology in males but not females. Further, KIR channel function decreased by ∼50% during AD conditions versus young regardless of sex. Finally, other than a ∼40% increase in females versus males during Aß pathology, [Ca2+]i responses to the mitochondrial uncoupler FCCP were similar among AD versus pre-AD conditions. CONCLUSION: Altogether, AD pathology represents a condition of altered KCa and KIR channel function in cerebrovascular endothelium in a sex-dependent and sex-independent manner respectively.


Asunto(s)
Enfermedad de Alzheimer/patología , Endotelio Vascular/metabolismo , Arterias Mesentéricas/patología , Canales de Potasio Calcio-Activados/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Señalización del Calcio/fisiología , Endotelio Vascular/patología , Femenino , Masculino , Potenciales de la Membrana/fisiología , Arterias Mesentéricas/metabolismo , Ratones Transgénicos , Factores Sexuales
8.
J Gerontol A Biol Sci Med Sci ; 75(11): 2064-2073, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31760422

RESUMEN

Age-related dementia entails impaired blood flow to and throughout the brain due, in part, to reduced endothelial nitric oxide signaling. However, it is unknown whether sex affects cerebrovascular Gq-protein-coupled receptors (GPCRs) and K+ channels underlying endothelium-derived hyperpolarization (EDH) during progressive aging. Thus, we simultaneously evaluated intracellular Ca2+ ([Ca2+]i) and membrane potential (Vm) of intact endothelial tubes freshly isolated from posterior cerebral arteries of young (4-6 mo), middle-aged (12-16 mo), and old (24-28 mo) male and female C57BL/6 mice. Purinergic receptor function (vs. muscarinic) was dominant and enhanced for [Ca2+]i increases in old females versus old males. However, Ca2+-sensitive K+ channel function as defined by NS309-evoked Vm hyperpolarization was mildly impaired in females versus males during old age. This sex-based contrast in declined function of GPCRs and K+ channels to produce EDH may support a greater ability for physiological endothelial GPCR function to maintain optimal cerebral blood flow in females versus males during old age. As reflective of the pattern of cerebral blood flow decline in human subjects, inward-rectifying K+ (KIR) channel function decreased with progressive age regardless of sex. Combined age-related analyses masked male versus female aging and, contrary to expectation, hydrogen peroxide played a minimal role. Altogether, we conclude a sex-based divergence in cerebrovascular endothelial GPCR and K+ channel function while highlighting a previously unidentified form of age-related endothelial dysfunction as reduced KIR channel function.


Asunto(s)
Envejecimiento/metabolismo , Arterias Cerebrales/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Canales de Potasio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Factores de Edad , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Factores Sexuales
9.
Int J Mol Sci ; 20(6)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893836

RESUMEN

Effective delivery of oxygen and essential nutrients to vital organs and tissues throughout the body requires adequate blood flow supplied through resistance vessels. The intimate relationship between intracellular calcium ([Ca2+]i) and regulation of membrane potential (Vm) is indispensable for maintaining blood flow regulation. In particular, Ca2+-activated K⁺ (KCa) channels were ascertained as transducers of elevated [Ca2+]i signals into hyperpolarization of Vm as a pathway for decreasing vascular resistance, thereby enhancing blood flow. Recent evidence also supports the reverse role for KCa channels, in which they facilitate Ca2+ influx into the cell interior through open non-selective cation (e.g., transient receptor potential; TRP) channels in accord with robust electrical (hyperpolarization) and concentration (~20,000-fold) transmembrane gradients for Ca2+. Such an arrangement supports a feed-forward activation of Vm hyperpolarization while potentially boosting production of nitric oxide. Furthermore, in vascular types expressing TRP channels but deficient in functional KCa channels (e.g., collecting lymphatic endothelium), there are profound alterations such as downstream depolarizing ionic fluxes and the absence of dynamic hyperpolarizing events. Altogether, this review is a refined set of evidence-based perspectives focused on the role of the endothelial KCa and TRP channels throughout multiple experimental animal models and vascular types. We discuss the diverse interactions among KCa and TRP channels to integrate Ca2+, oxidative, and electrical signaling in the context of cardiovascular physiology and pathology. Building from a foundation of cellular biophysical data throughout a wide and diverse compilation of significant discoveries, a translational narrative is provided for readers toward the treatment and prevention of chronic, age-related cardiovascular disease.


Asunto(s)
Envejecimiento/metabolismo , Calcio/metabolismo , Fenómenos Fisiológicos Cardiovasculares , Enfermedad Crónica , Canales de Potasio Calcio-Activados/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Humanos
10.
J Vis Exp ; (143)2019 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-30735188

RESUMEN

Cerebral arteries and their respective microcirculation deliver oxygen and nutrients to the brain via blood flow regulation. Endothelial cells line the lumen of blood vessels and command changes in vascular diameter as needed to meet the metabolic demand of neurons. Primary endothelial-dependent signaling pathways of hyperpolarization of membrane potential (Vm) and nitric oxide typically operate in parallel to mediate vasodilation and thereby increase blood flow. Although integral to coordinating vasodilation over several millimeters of vascular length, components of endothelium-derived hyperpolarization (EDH) have been historically difficult to measure. These components of EDH entail intracellular Ca2+ [Ca2+]i increases and subsequent activation of small- and intermediate conductance Ca2+-activated K+ (SKCa/IKCa) channels. Here, we present a simplified illustration of the isolation of fresh endothelium from mouse cerebral arteries; simultaneous measurements of endothelial [Ca2+]i and Vm using Fura-2 photometry and intracellular sharp electrodes, respectively; and a continuous superfusion of salt solutions and pharmacological agents under physiological conditions (pH 7.4, 37 °C). Posterior cerebral arteries from the Circle of Willis are removed free of the posterior communicating and the basilar arteries. Enzymatic digestion of cleaned posterior cerebral arterial segments and subsequent trituration facilitates removal of adventitia, perivascular nerves, and smooth muscle cells. Resulting posterior cerebral arterial endothelial "tubes" are then secured under a microscope and examined using a camera, photomultiplier tube, and one to two electrometers while under continuous superfusion. Collectively, this method can simultaneously measure changes in endothelial [Ca2+]i and Vm in discrete cellular locations, in addition to the spreading of EDH through gap junctions up to millimeter distances along the intact endothelium. This method is expected to yield a high-throughput analysis of the cerebral endothelial functions underlying mechanisms of blood flow regulation in the normal and diseased brain.


Asunto(s)
Calcio/metabolismo , Separación Celular/métodos , Arterias Cerebrales/citología , Endotelio Vascular , Potenciales de la Membrana , Animales , Células Endoteliales/metabolismo , Endotelio Vascular/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/citología , Óxido Nítrico/metabolismo
11.
Pharmacol Res Perspect ; 6(2): e00391, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29636977

RESUMEN

Electrical dynamics of freshly isolated cerebral endothelium have not been determined independently of perivascular nerves and smooth muscle. We tested the hypothesis that endothelium of cerebral and skeletal muscle arteries differentially utilizes purinergic and muscarinic signaling pathways to activate endothelium-derived hyperpolarization. Changes in membrane potential (Vm) were recorded in intact endothelial tubes freshly isolated from posterior cerebral and superior epigastric arteries of male and female C57BL/6 mice (age: 3-8 months). Vm was measured in response to activation of purinergic (P2Y) and muscarinic (M3) receptors in addition to small- and intermediate-conductance Ca2+-activated K+ (SKCa/IKCa) and inward rectifying K+ (KIR) channels using ATP (100 µmol·L-1), acetylcholine (ACh; 10 µmol·L-1), NS309 (0.01-10 µmol·L-1), and 15 mmol·L-1 KCl, respectively. Intercellular coupling was demonstrated via transfer of propidium iodide dye and electrical current (±0.5-3 nA) through gap junctions. With similarities observed across gender, peak hyperpolarization to ATP and ACh in skeletal muscle endothelial tubes was ~twofold and ~sevenfold higher, respectively, vs cerebral endothelial tubes, whereas responses to NS309 were similar (from resting Vm ~-30 mV to maximum ~-80 mV). Hyperpolarization (~8 mV) occurred during 15 mmol·L-1 KCl treatment in cerebral but not skeletal muscle endothelial tubes. Despite weaker hyperpolarization during endothelial GPCR stimulation in cerebral vs skeletal muscle endothelium, the capability for robust SKCa/IKCa activity is preserved across brain and skeletal muscle. As vascular reactivity decreases with aging and cardiovascular disease, endothelial K+ channel activity may be calibrated to restore blood flow to respective organs regardless of gender.


Asunto(s)
Corteza Cerebral/irrigación sanguínea , Endotelio Vascular/fisiología , Potenciales de la Membrana/fisiología , Músculo Esquelético/irrigación sanguínea , Canales de Potasio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Arterias/inervación , Arterias/metabolismo , Arterias/fisiología , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Endotelio Vascular/inervación , Endotelio Vascular/metabolismo , Femenino , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Músculo Liso Vascular/inervación , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...