Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 548(7665): 87-91, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28746312

RESUMEN

Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set of structural variants including many novel insertions and demonstrate how this variant catalogue enables further deciphering of known association mapping signals. We leverage the assemblies to provide 100 completely resolved major histocompatibility complex haplotypes and to resolve major parts of the Y chromosome. Our study provides a regional reference genome that we expect will improve the power of future association mapping studies and hence pave the way for precision medicine initiatives, which now are being launched in many countries including Denmark.


Asunto(s)
Variación Genética/genética , Genética de Población/normas , Genoma Humano/genética , Genómica/normas , Análisis de Secuencia de ADN/normas , Adulto , Alelos , Niño , Cromosomas Humanos Y/genética , Dinamarca , Femenino , Haplotipos/genética , Humanos , Complejo Mayor de Histocompatibilidad/genética , Masculino , Edad Materna , Tasa de Mutación , Edad Paterna , Mutación Puntual/genética , Estándares de Referencia
2.
Nature ; 499(7459): 471-5, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23823723

RESUMEN

Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.


Asunto(s)
Variación Genética , Hominidae/genética , África , Animales , Animales Salvajes/genética , Animales de Zoológico/genética , Asia Sudoriental , Evolución Molecular , Flujo Génico/genética , Genética de Población , Genoma/genética , Gorilla gorilla/clasificación , Gorilla gorilla/genética , Hominidae/clasificación , Humanos , Endogamia , Pan paniscus/clasificación , Pan paniscus/genética , Pan troglodytes/clasificación , Pan troglodytes/genética , Filogenia , Polimorfismo de Nucleótido Simple/genética , Densidad de Población
3.
PLoS Genet ; 8(12): e1003125, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284294

RESUMEN

We present a hidden Markov model (HMM) for inferring gradual isolation between two populations during speciation, modelled as a time interval with restricted gene flow. The HMM describes the history of adjacent nucleotides in two genomic sequences, such that the nucleotides can be separated by recombination, can migrate between populations, or can coalesce at variable time points, all dependent on the parameters of the model, which are the effective population sizes, splitting times, recombination rate, and migration rate. We show by extensive simulations that the HMM can accurately infer all parameters except the recombination rate, which is biased downwards. Inference is robust to variation in the mutation rate and the recombination rate over the sequence and also robust to unknown phase of genomes unless they are very closely related. We provide a test for whether divergence is gradual or instantaneous, and we apply the model to three key divergence processes in great apes: (a) the bonobo and common chimpanzee, (b) the eastern and western gorilla, and (c) the Sumatran and Bornean orang-utan. We find that the bonobo and chimpanzee appear to have undergone a clear split, whereas the divergence processes of the gorilla and orang-utan species occurred over several hundred thousands years with gene flow stopping quite recently. We also apply the model to the Homo/Pan speciation event and find that the most likely scenario involves an extended period of gene flow during speciation.


Asunto(s)
Evolución Molecular , Especiación Genética , Variación Genética , Genoma , Animales , Flujo Génico , Genética de Población , Gorilla gorilla/genética , Humanos , Cadenas de Markov , Modelos Teóricos , Pan paniscus/genética , Pan troglodytes/genética , Filogenia , Pongo/genética , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA