Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674143

RESUMEN

Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.


Asunto(s)
Peroxidación de Lípido , Osteosarcoma , Oxidación-Reducción , Estrés Oxidativo , Transducción de Señal , Osteosarcoma/metabolismo , Osteosarcoma/patología , Humanos , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Animales
2.
Mar Drugs ; 18(1)2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31877804

RESUMEN

The Nme gene/protein family of nucleoside diphosphate kinases (NDPK) was originally named after its member Nm23-H1/Nme1, the first identified metastasis suppressor. Human Nme proteins are divided in two groups. They all possess nucleoside diphosphate kinase domain (NDK). Group I (Nme1-Nme4) display a single type NDK domain, whereas Group II (Nme5-Nme9) display a single or several different NDK domains, associated or not associated with extra-domains. Data strongly suggest that, unlike Group I, none of the members of Group II display measurable NDPK activity, although some of them autophosphorylate. The multimeric form is required for the NDPK activity. Group I proteins are known to multimerize, while there are no data on the multimerization of Group II proteins. The Group II ancestral type protein was shown to be conserved in several species from three eukaryotic supergroups. Here, we analysed the Nme protein from an early branching eukaryotic lineage, the red alga Chondrus crispus. We show that the ancestral type protein, unlike its human homologue, was fully functional multimeric NDPK with high affinity to various types of DNA and dispersed localization throughout the eukaryotic cell. Its overexpression inhibits both cell proliferation and the anchorage-independent growth of cells in soft agar but fails to deregulate cell apoptosis. We conclude that the ancestral gene has changed during eukaryotic evolution, possibly in correlation with the protein function.


Asunto(s)
Chondrus/genética , Nucleósido-Difosfato Quinasa/genética , Animales , Proliferación Celular , Chondrus/ultraestructura , Células HEK293 , Humanos , Nucleósido Difosfato Quinasas NM23
3.
Free Radic Res ; 52(6): 672-684, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29683756

RESUMEN

Sirtuin 3 (Sirt3) has a promising role in cancer tumourigenesis and treatment, but there have been controversies about its role as oncogene or tumour suppressor in different types of cancer. Changes in its expression are associated with the excessive production of reactive oxygen species (ROS), thus contributing to mitochondrial dysfunction and age-related pathologies. Hyperoxic treatment (i.e. generator of ROS) was shown to support some tumourigenic properties, but finally suppresses growth of certain mammary carcinoma cells. Due to strikingly reduced Sirt3 level in many breast cancer cell lines, we aimed to clarify the effect of de novo Sirt3 expression upon hyperoxic treatment in the human MCF-7 breast cancer cells. De novo expression of Sirt3 decreased metabolic activity and cellular growth of MCF-7 cells, reduced expression of proangiogenic and epithelial mesenchymal transition genes, induced metabolic switch from glycolysis to oxidative phosphorylation, and decreased abundance of senescent cells. These effects were enhanced upon hyperoxic treatment: induction of DNA damage and upregulation of p53, with an increase of ROS levels followed by mitochondrial and antioxidant dysfunction, resulted in additional reduction of metabolic activity and inhibition of cellular growth and survival. The mitigation of tumorigenic properties and enhancement of the susceptibility of the MCF-7 breast cancer cells to the hyperoxic treatment upon de novo Sirt3 expression indicates that these factors, individually and in combination, should be further explored in vitro and particularly in vivo, as an adjuvant tumour therapy in breast cancer malignancies.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Mitocondrias/efectos de los fármacos , Oxígeno/farmacología , Sirtuina 3/genética , Catalasa/genética , Catalasa/metabolismo , Femenino , Glucólisis/efectos de los fármacos , Humanos , Células MCF-7 , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Sirtuina 3/metabolismo , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Transfección , Transgenes , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Vimentina/genética , Vimentina/metabolismo
4.
Mar Drugs ; 16(1)2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29320389

RESUMEN

Recently, it was shown that the majority of genes linked to human diseases, such as cancer genes, evolved in two major evolutionary transitions-the emergence of unicellular organisms and the transition to multicellularity. Therefore, it has been widely accepted that the majority of disease-related genes has already been present in species distantly related to humans. An original way of studying human diseases relies on analyzing genes and proteins that cause a certain disease using model organisms that belong to the evolutionary level at which these genes have emerged. This kind of approach is supported by the simplicity of the genome/proteome, body plan, and physiology of such model organisms. It has been established for quite some time that sponges are an ideal model system for such studies, having a vast variety of genes known to be engaged in sophisticated processes and signalling pathways associated with higher animals. Sponges are considered to be the simplest multicellular animals and have changed little during evolution. Therefore, they provide an insight into the metazoan ancestor genome/proteome features. This review compiles current knowledge of cancer-related genes/proteins in marine sponges.


Asunto(s)
Neoplasias/genética , Poríferos/genética , Animales , Evolución Molecular , Genoma/genética , Humanos , Proteoma/genética , Transducción de Señal/genética
5.
Acta Dermatovenerol Croat ; 25(2): 151-154, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28871931

RESUMEN

Microsporum (M.) canis is the most common fungus to cause tinea capitis in Europe, especially in the Mediterranean region and South and Central Europe. Fungal scalp infections caused by M. canis tend to be non-inflammatory. Recently, a growing number of cases of tinea capitis characterized by inflammatory infection caused by M. canis and M. gypseum have been registered. We present a case of highly inflammatory tinea capitis, also known as kerion celsi, caused by M. canis in a 6-year-old-patient. Scalp infections due to M. canis are a growing problem in dermatological practice. Changes in epidemiology, etiology, and clinical patterns of fungal infections due to M. canis are significant. Greater awareness of this problem is needed in order to establish proper diagnosis and successful treatment strategy for these patients.


Asunto(s)
Microsporum/aislamiento & purificación , Tiña del Cuero Cabelludo/microbiología , Tiña del Cuero Cabelludo/patología , Niño , Femenino , Humanos , Microsporum/patogenicidad
6.
J Biol Chem ; 291(44): 23175-23187, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27634042

RESUMEN

ADP-ribosylation is a post-translational modification that can alter the physical and chemical properties of target proteins and that controls many important cellular processes. Macrodomains are evolutionarily conserved structural domains that bind ADP-ribose derivatives and are found in proteins with diverse cellular functions. Some proteins from the macrodomain family can hydrolyze ADP-ribosylated substrates and therefore reverse this post-translational modification. Bacteria and Streptomyces, in particular, are known to utilize protein ADP-ribosylation, yet very little is known about their enzymes that synthesize and remove this modification. We have determined the crystal structure and characterized, both biochemically and functionally, the macrodomain protein SCO6735 from Streptomyces coelicolor This protein is a member of an uncharacterized subfamily of macrodomain proteins. Its crystal structure revealed a highly conserved macrodomain fold. We showed that SCO6735 possesses the ability to hydrolyze PARP-dependent protein ADP-ribosylation. Furthermore, we showed that expression of this protein is induced upon DNA damage and that deletion of this protein in S. coelicolor increases antibiotic production. Our results provide the first insights into the molecular basis of its action and impact on Streptomyces metabolism.


Asunto(s)
Antibacterianos/biosíntesis , Proteínas Bacterianas/metabolismo , Streptomyces coelicolor/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Daño del ADN , Procesamiento Proteico-Postraduccional , Streptomyces coelicolor/química , Streptomyces coelicolor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA