Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 2(5): 100263, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34095876

RESUMEN

Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) regulate glucose and energy homeostasis. Targeting both pathways with GIP receptor (GIPR) antagonist antibody (GIPR-Ab) and GLP-1 receptor (GLP-1R) agonist, by generating GIPR-Ab/GLP-1 bispecific molecules, is an approach for treating obesity and its comorbidities. In mice and monkeys, these molecules reduce body weight (BW) and improve many metabolic parameters. BW loss is greater with GIPR-Ab/GLP-1 than with GIPR-Ab or a control antibody conjugate, suggesting synergistic effects. GIPR-Ab/GLP-1 also reduces the respiratory exchange ratio in DIO mice. Simultaneous receptor binding and rapid receptor internalization by GIPR-Ab/GLP-1 amplify endosomal cAMP production in recombinant cells expressing both receptors. This may explain the efficacy of the bispecific molecules. Overall, our GIPR-Ab/GLP-1 molecules promote BW loss, and they may be used for treating obesity.


Asunto(s)
Peso Corporal/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Obesidad/metabolismo , Receptores de la Hormona Gastrointestinal/antagonistas & inhibidores , Animales , Polipéptido Inhibidor Gástrico/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Prueba de Tolerancia a la Glucosa/métodos , Haplorrinos/metabolismo , Ratones Obesos
2.
Mol Metab ; 46: 101117, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33220493

RESUMEN

BACKGROUND: Obesity is rapidly becoming one of the world's most critical health care concerns. Comorbidities accompanying excess weight include cardiovascular disease, diabetes, and certain cancers. These comorbidities result in greater hospitalization and other health care-related costs. Economic impacts are likely to be felt more acutely in developing countries, where obesity rates continue to rise and health care resources are already insufficient. Some of the more effective treatments are invasive and expensive surgeries, which some economies in the world cannot afford to offer to a broad population. Pharmacological therapies are needed to supplement treatment options for patients who cannot, or will not, undergo surgical treatment. However, the few drug therapies currently available have either limited efficacy or safety concerns. A possible exception has been glucagon-like peptide-1 analogs, although these have shown a number of adverse events. New drug therapies that are safe and produce robust weight loss are needed. SCOPE OF REVIEW: Herein, we review the role of growth differentiation factor 15 (GDF15) in feeding behavior and obesity, summarize some of the new and exciting biological discoveries around signaling pathways and tissue sites of action, and highlight initial efforts to develop GDF15-based therapies suitable for inducing weight loss in humans. MAJOR CONCLUSIONS: Within the last several years, great strides have been made in understanding the biology of GDF15. Recent developments include identification of an endogenous receptor, biological localization of the receptor system, impact on energy homeostasis, and identification of molecules suitable for administration to humans as anti-obesity treatments. New and exciting research on GDF15 suggests that it holds promise as a novel obesity treatment as new molecules progress toward clinical development.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento/farmacocinética , Factor 15 de Diferenciación de Crecimiento/uso terapéutico , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Resistencia a la Insulina , Pérdida de Peso/efectos de los fármacos
3.
PLoS One ; 15(8): e0231234, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32804947

RESUMEN

Cardiometabolic syndrome has become a global health issue. Heart failure is a common comorbidity of cardiometabolic syndrome. Successful drug development to prevent cardiometabolic syndrome and associated comorbidities requires preclinical models predictive of human conditions. To characterize the heart failure component of cardiometabolic syndrome, cardiometabolic, metabolic, and renal biomarkers were evaluated in lean and obese ZSF1 19- to 32-week-old male rats. Histopathological assessment of kidneys and hearts was performed. Cardiac function, exercise capacity, and left ventricular gene expression were also analyzed. Obese ZSF1 rats exhibited multiple features of human cardiometabolic syndrome by pathological changes in systemic renal, metabolic, and cardiovascular disease circulating biomarkers. Hemodynamic assessment, echocardiography, and decreased exercise capacity confirmed heart failure with preserved ejection fraction. RNA-seq results demonstrated changes in left ventricular gene expression associated with fatty acid and branched chain amino acid metabolism, cardiomyopathy, cardiac hypertrophy, and heart failure. Twelve weeks of growth differentiation factor 15 (GDF15) treatment significantly decreased body weight, food intake, blood glucose, and triglycerides and improved exercise capacity in obese ZSF1 males. Systemic cardiovascular injury markers were significantly lower in GDF15-treated obese ZSF1 rats. Obese ZSF1 male rats represent a preclinical model for human cardiometabolic syndrome with established heart failure with preserved ejection fraction. GDF15 treatment mediated dietary response and demonstrated a cardioprotective effect in obese ZSF1 rats.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/farmacología , Síndrome Metabólico/metabolismo , Animales , Biomarcadores/metabolismo , Corazón/fisiología , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/fisiopatología , Riñón/metabolismo , Masculino , Síndrome Metabólico/complicaciones , Miocardio/metabolismo , Obesidad/complicaciones , Ratas , Ratas Endogámicas , Ratas Zucker , Volumen Sistólico/fisiología , Función Ventricular Izquierda/efectos de los fármacos , Función Ventricular Izquierda/fisiología
4.
Sci Transl Med ; 10(472)2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30567927

RESUMEN

Glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) has been identified in multiple genome-wide association studies (GWAS) as a contributor to obesity, and GIPR knockout mice are protected against diet-induced obesity (DIO). On the basis of this genetic evidence, we developed anti-GIPR antagonistic antibodies as a potential therapeutic strategy for the treatment of obesity and observed that a mouse anti-murine GIPR antibody (muGIPR-Ab) protected against body weight gain, improved multiple metabolic parameters, and was associated with reduced food intake and resting respiratory exchange ratio (RER) in DIO mice. We replicated these results in obese nonhuman primates (NHPs) using an anti-human GIPR antibody (hGIPR-Ab) and found that weight loss was more pronounced than in mice. In addition, we observed enhanced weight loss in DIO mice and NHPs when anti-GIPR antibodies were codosed with glucagon-like peptide-1 receptor (GLP-1R) agonists. Mechanistic and crystallographic studies demonstrated that hGIPR-Ab displaced GIP and bound to GIPR using the same conserved hydrophobic residues as GIP. Further, using a conditional knockout mouse model, we excluded the role of GIPR in pancreatic ß-cells in the regulation of body weight and response to GIPR antagonism. In conclusion, these data provide preclinical validation of a therapeutic approach to treat obesity with anti-GIPR antibodies.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Obesidad/tratamiento farmacológico , Receptores de la Hormona Gastrointestinal/antagonistas & inhibidores , Adipocitos/metabolismo , Animales , Anticuerpos/farmacología , Anticuerpos/uso terapéutico , Dieta , Quimioterapia Combinada , Conducta Alimentaria , Polipéptido Inhibidor Gástrico/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Péptidos Similares al Glucagón/análogos & derivados , Péptidos Similares al Glucagón/farmacología , Péptidos Similares al Glucagón/uso terapéutico , Humanos , Fragmentos Fc de Inmunoglobulinas/farmacología , Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Liraglutida/farmacología , Liraglutida/uso terapéutico , Ratones Obesos , Obesidad/patología , Primates , Receptores de la Hormona Gastrointestinal/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/uso terapéutico , Respiración , Aumento de Peso/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos
5.
J Endocrinol ; 237(2): 139-152, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29615519

RESUMEN

Fibroblast growth factor 21 (FGF21) is a potent regulator of glucose and lipid homeostasis in vivo; its most closely related subfamily member, FGF19, is known to be a critical negative regulator of bile acid synthesis. To delineate whether FGF21 also plays a functional role in bile acid metabolism, we evaluated the effects of short- and long-term exposure to native FGF21 and long-acting FGF21 analogs on hepatic signal transduction, gene expression and enterohepatic bile acid levels in primary hepatocytes and in rodent and monkey models. FGF21 acutely induced ERK phosphorylation and inhibited Cyp7A1 mRNA expression in primary hepatocytes and in different rodent models, although less potently than recombinant human FGF19. Long-term administration of FGF21 in mice fed a standard chow diet resulted in a 50-60% decrease in bile acid levels in the liver and small intestines and consequently a 60% reduction of bile acid pool size. In parallel, colonic and fecal bile acid was decreased, whereas fecal cholesterol and fatty acid excretions were elevated. The long-acting FGF21 analog showed superiority to recombinant human FGF21 and FGF19 in decreasing bile acid levels with long duration of effect action in mice. Long-term administration of the long-acting FGF21 analogs in obese cynomolgus monkeys suppressed plasma total bile acid and 7α-hydroxy-4-cholesten-3-one levels, a biomarker for bile acid synthesis. Collectively, these data reveal a previously unidentified role of FGF21 in bile acid metabolism as a negative regulator of bile acid synthesis.


Asunto(s)
Ácidos y Sales Biliares/biosíntesis , Factores de Crecimiento de Fibroblastos/fisiología , Hepatocitos/metabolismo , Animales , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Factores de Crecimiento de Fibroblastos/farmacología , Hepatocitos/efectos de los fármacos , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Macaca fascicularis , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
6.
Sci Transl Med ; 9(412)2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-29046435

RESUMEN

In search of metabolically regulated secreted proteins, we conducted a microarray study comparing gene expression in major metabolic tissues of fed and fasted ob/ob mice and C57BL/6 mice. The array used in this study included probes for ~4000 genes annotated as potential secreted proteins. Circulating macrophage inhibitory cytokine 1 (MIC-1)/growth differentiation factor 15 (GDF15) concentrations were increased in obese mice, rats, and humans in comparison to age-matched lean controls. Adeno-associated virus-mediated overexpression of GDF15 and recombinant GDF15 treatments reduced food intake and body weight and improved metabolic profiles in various metabolic disease models in mice, rats, and obese cynomolgus monkeys. Analysis of the GDF15 crystal structure suggested that the protein is not suitable for conventional Fc fusion at the carboxyl terminus of the protein. Thus, we used a structure-guided approach to design and successfully generate several Fc fusion molecules with extended half-life and potent efficacy. Furthermore, we discovered that GDF15 delayed gastric emptying, changed food preference, and activated area postrema neurons, confirming a role for GDF15 in the gut-brain axis responsible for the regulation of body energy intake. Our work provides evidence that GDF15 Fc fusion proteins could be potential therapeutic agents for the treatment of obesity and related comorbidities.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento/uso terapéutico , Obesidad/tratamiento farmacológico , Animales , Cristalografía por Rayos X , Dependovirus/metabolismo , Dieta , Preferencias Alimentarias , Vaciamiento Gástrico , Factor 15 de Diferenciación de Crecimiento/química , Humanos , Macaca fascicularis , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Neuronas/fisiología , Obesidad/patología , Ratas Sprague-Dawley , Receptores Fc/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Regulación hacia Arriba
7.
J Med Chem ; 58(24): 9663-79, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26551034

RESUMEN

The HTS-based discovery and structure-guided optimization of a novel series of GKRP-selective GK-GKRP disrupters are revealed. Diarylmethanesulfonamide hit 6 (hGK-hGKRP IC50 = 1.2 µM) was optimized to lead compound 32 (AMG-0696; hGK-hGKRP IC50 = 0.0038 µM). A stabilizing interaction between a nitrogen atom lone pair and an aromatic sulfur system (nN → σ*S-X) in 32 was exploited to conformationally constrain a biaryl linkage and allow contact with key residues in GKRP. Lead compound 32 was shown to induce GK translocation from the nucleus to the cytoplasm in rats (IHC score = 0; 10 mg/kg po, 6 h) and blood glucose reduction in mice (POC = -45%; 100 mg/kg po, 3 h). X-ray analyses of 32 and several precursors bound to GKRP were also obtained. This novel disrupter of GK-GKRP binding enables further exploration of GKRP as a potential therapeutic target for type II diabetes and highlights the value of exploiting unconventional nonbonded interactions in drug design.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glucoquinasa/metabolismo , Hipoglucemiantes/química , Sulfonamidas/química , Tiofenos/química , Transporte Activo de Núcleo Celular , Animales , Glucemia/metabolismo , Núcleo Celular/metabolismo , Cristalografía por Rayos X , Citoplasma/metabolismo , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Masculino , Ratones , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Conformación Molecular , Unión Proteica , Ratas Sprague-Dawley , Estereoisomerismo , Relación Estructura-Actividad , Sulfonamidas/farmacocinética , Sulfonamidas/farmacología , Tiofenos/farmacocinética , Tiofenos/farmacología
8.
J Med Chem ; 58(11): 4462-82, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-25914941

RESUMEN

The glucokinase-glucokinase regulatory protein (GK-GKRP) complex plays an important role in controlling glucose homeostasis in the liver. We have recently disclosed a series of arylpiperazines as in vitro and in vivo disruptors of the GK-GKRP complex with efficacy in rodent models of type 2 diabetes mellitus (T2DM). Herein, we describe a new class of aryl sulfones as disruptors of the GK-GKRP complex, where the central piperazine scaffold has been replaced by an aromatic group. Conformational analysis and exploration of the structure-activity relationships of this new class of compounds led to the identification of potent GK-GKRP disruptors. Further optimization of this novel series delivered thiazole sulfone 93, which was able to disrupt the GK-GKRP interaction in vitro and in vivo and, by doing so, increases cytoplasmic levels of unbound GK.


Asunto(s)
Aminopiridinas/farmacología , Proteínas Portadoras/antagonistas & inhibidores , Glucoquinasa/antagonistas & inhibidores , Hipoglucemiantes/farmacología , Hígado/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfonas/química , Aminopiridinas/química , Animales , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Glucoquinasa/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/química , Hígado/citología , Hígado/metabolismo , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Sulfonas/farmacología
9.
Expert Opin Ther Targets ; 19(1): 129-39, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25324018

RESUMEN

INTRODUCTION: Type 2 diabetes mellitus is a major healthcare concern. Significant efforts are being devoted toward developing new, safe, and more effective treatments. One approach involves activating glucokinase (GK). Earlier GK activator (GKA) approaches have focused on direct activation of GK through allosteric activators. AREAS COVERED: This review summarizes the roles of GK and its key partner glucokinase regulatory protein in glucose metabolism and describes approaches that may alleviate hypoglycemic risk observed with GKAs. EXPERT OPINION: The current GKA therapeutic approaches are associated with disappointing success rates. In rodent animal models, efficacy was observed with GKA. However, in all human studies, GKAs effectively lowered blood glucose, but at the expense of an increased risk of hypoglycemia. Other liabilities like loss of efficacy with time and increase in blood pressure or triglyceride levels have been reported with different molecules. To avoid hypoglycemic risk, alternative approaches to regulate GK activity have been initiated. Data from clinical trials using these agents are either not yet available to the public or the compounds are too early in development for humans. GK is a promising target for antidiabetic therapy. Despite encouraging biology, more research is required to fully understand GK as a drug target.


Asunto(s)
Proteínas Portadoras/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucoquinasa/metabolismo , Animales , Activación Enzimática , Humanos , Hígado/enzimología , Páncreas/enzimología
10.
J Med Chem ; 57(14): 5949-64, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25001129

RESUMEN

Structure-activity relationship investigations conducted at the 5-position of the N-pyridine ring of a series of N-arylsulfonyl-N'-2-pyridinyl-piperazines led to the identification of a novel bis-pyridinyl piperazine sulfonamide (51) that was a potent disruptor of the glucokinase-glucokinase regulatory protein (GK-GKRP) interaction. Analysis of the X-ray cocrystal of compound 51 bound to hGKRP revealed that the 3-pyridine ring moiety occupied a previously unexplored binding pocket within the protein. Key features of this new binding mode included forming favorable contacts with the top face of the Ala27-Val28-Pro29 ("shelf region") as well as an edge-to-face interaction with the Tyr24 side chain. Compound 51 was potent in both biochemical and cellular assays (IC50=0.005 µM and EC50=0.205 µM, respectively) and exhibited acceptable pharmacokinetic properties for in vivo evaluation. When administered to db/db mice (100 mg/kg, po), compound 51 demonstrated a robust pharmacodynamic effect and significantly reduced blood glucose levels up to 6 h postdose.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Glucoquinasa/antagonistas & inhibidores , Glucoquinasa/metabolismo , Piperazinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Sitios de Unión/efectos de los fármacos , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Glucoquinasa/química , Humanos , Modelos Moleculares , Conformación Molecular , Piperazinas/síntesis química , Piperazinas/química , Unión Proteica/efectos de los fármacos , Piridinas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
11.
J Biomol Screen ; 19(7): 1014-23, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24717911

RESUMEN

In the nuclei of hepatocytes, glucokinase regulatory protein (GKRP) modulates the activity of glucokinase (GK), a key regulator of glucose homeostasis. Currently, direct activators of GK (GKAs) are in development for the treatment of type 2 diabetes. However, this approach is generally associated with a risk of hypoglycemia. To mitigate such risk, we target the GKRP regulation, which indirectly restores GK activity. Here we describe a screening strategy to look specifically for GKRP modulators, in addition to traditional GKAs. Two high-throughput screening campaigns were performed with our compound libraries using a luminescence assay format, one with GK alone and the other with a GK/GKRP complex in the presence of sorbitol-6-phosphate (S6P). By a subtraction method in the hit triage process of these campaigns, we discovered two close analogs that bind GKRP specifically with sub-µM potency to a site distinct from where fructose-1-phosphate binds. These small molecules are first-in-class allosteric modulators of the GK/GKRP interaction and are fully active even in the presence of S6P. Activation of GK by this particular mechanism, without altering the enzymatic profile, represents a novel pharmacologic modality of intervention in the GK/GKRP pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Descubrimiento de Drogas/métodos , Glucoquinasa/química , Adenosina Trifosfato/química , Regulación Alostérica , Animales , Glucemia/análisis , Calorimetría , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fluorescencia , Fluorometría , Fructosafosfatos/química , Hepatocitos/metabolismo , Hexosafosfatos/química , Homeostasis , Humanos , Hipoglucemia/prevención & control , Concentración 50 Inhibidora , Luminiscencia , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Ratas , Resonancia por Plasmón de Superficie
12.
J Med Chem ; 57(7): 3094-116, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24611879

RESUMEN

We have recently reported a novel approach to increase cytosolic glucokinase (GK) levels through the binding of a small molecule to its endogenous inhibitor, glucokinase regulatory protein (GKRP). These initial investigations culminated in the identification of 2-(4-((2S)-4-((6-amino-3-pyridinyl)sulfonyl)-2-(1-propyn-1-yl)-1-piperazinyl)phenyl)-1,1,1,3,3,3-hexafluoro-2-propanol (1, AMG-3969), a compound that effectively enhanced GK translocation and reduced blood glucose levels in diabetic animals. Herein we report the results of our expanded SAR investigations that focused on modifications to the aryl carbinol group of this series. Guided by the X-ray cocrystal structure of compound 1 bound to hGKRP, we identified several potent GK-GKRP disruptors bearing a diverse set of functionalities in the aryl carbinol region. Among them, sulfoximine and pyridinyl derivatives 24 and 29 possessed excellent potency as well as favorable PK properties. When dosed orally in db/db mice, both compounds significantly lowered fed blood glucose levels (up to 58%).


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Diabetes Mellitus/tratamiento farmacológico , Glucoquinasa/antagonistas & inhibidores , Hepatocitos/efectos de los fármacos , Microsomas Hepáticos/efectos de los fármacos , Piperazinas/química , Sulfonamidas/farmacología , Animales , Disponibilidad Biológica , Glucemia/metabolismo , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Glucoquinasa/metabolismo , Hepatocitos/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Ratones , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Piperazinas/farmacología , Ratas , Estereoisomerismo , Relación Estructura-Actividad , Sulfonamidas/química
13.
J Med Chem ; 57(2): 309-24, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24405172

RESUMEN

Small molecule activators of glucokinase have shown robust efficacy in both preclinical models and humans. However, overactivation of glucokinase (GK) can cause excessive glucose turnover, leading to hypoglycemia. To circumvent this adverse side effect, we chose to modulate GK activity by targeting the endogenous inhibitor of GK, glucokinase regulatory protein (GKRP). Disrupting the GK-GKRP complex results in an increase in the amount of unbound cytosolic GK without altering the inherent kinetics of the enzyme. Herein we report the identification of compounds that efficiently disrupt the GK-GKRP interaction via a previously unknown binding pocket. Using a structure-based approach, the potency of the initial hit was improved to provide 25 (AMG-1694). When dosed in ZDF rats, 25 showed both a robust pharmacodynamic effect as well as a statistically significant reduction in glucose. Additionally, hypoglycemia was not observed in either the hyperglycemic or normal rats.


Asunto(s)
Proteínas Portadoras/metabolismo , Glucoquinasa/metabolismo , Hipoglucemiantes/química , Piperazinas/química , Animales , Sitios de Unión , Proteínas Portadoras/química , Cristalografía por Rayos X , Glucoquinasa/química , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Hipoglucemia/inducido químicamente , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/farmacología , Piperazinas/efectos adversos , Piperazinas/farmacología , Conformación Proteica , Transporte de Proteínas , Ratas , Ratas Zucker , Estereoisomerismo , Relación Estructura-Actividad , Sulfonamidas/efectos adversos , Sulfonamidas/química , Sulfonamidas/farmacología
14.
J Med Chem ; 57(2): 325-38, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24405213

RESUMEN

In the previous report , we described the discovery and optimization of novel small molecule disruptors of the GK-GKRP interaction culminating in the identification of 1 (AMG-1694). Although this analogue possessed excellent in vitro potency and was a useful tool compound in initial proof-of-concept experiments, high metabolic turnover limited its advancement. Guided by a combination of metabolite identification and structure-based design, we have successfully discovered a potent and metabolically stable GK-GKRP disruptor (27, AMG-3969). When administered to db/db mice, this compound demonstrated a robust pharmacodynamic response (GK translocation) as well as statistically significant dose-dependent reductions in fed blood glucose levels.


Asunto(s)
Proteínas Portadoras/metabolismo , Glucoquinasa/metabolismo , Hipoglucemiantes/química , Piperazinas/síntesis química , Sulfonamidas/síntesis química , Alquinos/síntesis química , Alquinos/farmacocinética , Alquinos/farmacología , Animales , Glucemia/metabolismo , Proteínas Portadoras/química , Glucoquinasa/química , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Ratones , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Morfolinas/síntesis química , Morfolinas/farmacocinética , Morfolinas/farmacología , Piperazinas/farmacocinética , Piperazinas/farmacología , Unión Proteica , Transporte de Proteínas , Ratas , Estereoisomerismo , Relación Estructura-Actividad , Sulfonamidas/farmacocinética , Sulfonamidas/farmacología
15.
Nature ; 504(7480): 437-40, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24226772

RESUMEN

Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic ß-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales , Animales , Glucemia/metabolismo , Proteínas Portadoras/metabolismo , Núcleo Celular/enzimología , Cristalografía por Rayos X , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/enzimología , Modelos Animales de Enfermedad , Hepatocitos , Humanos , Hiperglucemia/sangre , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/enzimología , Hipoglucemiantes/química , Hígado/citología , Hígado/enzimología , Hígado/metabolismo , Masculino , Modelos Moleculares , Especificidad de Órganos , Fosforilación/efectos de los fármacos , Piperazinas/química , Piperazinas/metabolismo , Piperazinas/farmacología , Piperazinas/uso terapéutico , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Wistar , Sulfonamidas/química , Sulfonamidas/metabolismo , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico
16.
PLoS One ; 7(7): e40164, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792234

RESUMEN

Fibroblast growth factor 21 (FGF21) is a potent metabolic regulator, and pharmacological administration elicits glucose and lipid lowering responses in mammals. To delineate if adipose tissue is the predominant organ responsible for anti-diabetic effects of FGF21, we treated mice with reduced body fat (lipodystrophy mice with adipose specific expression of active sterol regulatory element binding protein 1c; Tg) with recombinant murine FGF21 (rmuFGF21). Unlike wildtype (WT) mice, Tg mice were refractory to the beneficial effects of rmuFGF21 on body weight, adipose mass, plasma insulin and glucose tolerance. To determine if adipose mass was critical for these effects, we transplanted WT white adipose tissue (WAT) into Tg mice and treated the mice with rmuFGF21. After transplantation, FGF21 responsiveness was completely restored in WAT transplanted Tg mice compared to sham Tg mice. Further, leptin treatment alone was sufficient to restore the anti-diabetic effects of rmuFGF21 in Tg mice. Molecular analyses of Tg mice revealed normal adipose expression of Fgfr1, Klb and an 8-fold over-expression of Fgf21. Impaired FGF21-induced signaling indicated that residual adipose tissue of Tg mice was resistant to FGF21, whilst normal FGF21 signaling was observed in Tg livers. Together these data suggest that adipose tissue is required for the triglyceride and glucose, but not the cholesterol lowering efficacy of FGF21, and that leptin and FGF21 exert additive anti-diabetic effects in Tg mice.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Homeostasis , Leptina/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/trasplante , Animales , Modelos Animales de Enfermedad , Femenino , Factores de Crecimiento de Fibroblastos/administración & dosificación , Factores de Crecimiento de Fibroblastos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Leptina/administración & dosificación , Leptina/farmacología , Lipodistrofia/genética , Lipodistrofia/metabolismo , Lipodistrofia/terapia , Masculino , Ratones , Ratones Transgénicos , PPAR gamma/genética , PPAR gamma/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología , Transducción de Señal
17.
Endocrinology ; 153(1): 69-80, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22067317

RESUMEN

Circulating levels of fibroblast growth factor 21 (FGF21), a metabolic regulator of glucose, lipid, and energy homeostasis, are elevated in obese diabetic subjects, raising questions about potential FGF21 resistance. Here we report tissue expression changes in FGF21 and its receptor components, and we describe the target-organ and whole-body responses to FGF21 in ob/ob and diet-induced obese (DIO) mice. Plasma FGF21 concentrations were elevated 8- and 16-fold in DIO and ob/ob mice, respectively, paralleling a dramatic increase in hepatic FGF21 mRNA expression. Concurrently, expression levels of ßKlotho, FGF receptor (FGFR)-1c, and FGFR2c were markedly down-regulated in the white adipose tissues (WAT) of ob/ob and DIO mice. However, dose-response curves of recombinant human FGF21 (rhFGF21) stimulation of ERK phosphorylation in the liver and WAT were not right shifted in disease models, although the magnitude of induction in ERK phosphorylation was partially attenuated in DIO mice. Whole-body metabolic responses were preserved in ob/ob and DIO mice, with disease models being more sensitive and responsive than lean mice to the glucose-lowering and weight-loss effects of rhFGF21. Endogenous FGF21 levels, although elevated in diseased mice, were below the half-maximal effective concentrations of rhFGF21, suggesting a state of relative deficiency. Hepatic and WAT FGF21 mRNA expression levels declined after rhFGF21 treatment in the absence of the increased expression levels of ßKlotho and FGFR. We conclude that overt FGF21 resistance was not evident in the disease models, and increased hepatic FGF21 expression as a result of local metabolic changes is likely a major cause of elevated circulating FGF21 levels.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/administración & dosificación , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/genética , Expresión Génica , Humanos , Resistencia a la Insulina/genética , Proteínas Klotho , Hígado/efectos de los fármacos , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Obesidad/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Proteínas Recombinantes/administración & dosificación
18.
PLoS One ; 6(4): e18800, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21533112

RESUMEN

Precise quantification of atherosclerotic plaque in preclinical models of atherosclerosis requires the volumetric assessment of the lesion(s) while maintaining in situ architecture. Here we use micro-computed tomography (microCT) to detect ex vivo aortic plaque established in three dyslipidemic mouse models of atherosclerosis. All three models lack the low-density lipoprotein receptor (Ldlr(-/-)), each differing in plaque severity, allowing the evaluation of different plaque volumes using microCT technology. From clearly identified lesions in the thoracic aorta from each model, we were able to determine plaque volume (0.04-3.1 mm(3)), intimal surface area (0.5-30 mm(2)), and maximum plaque (intimal-medial) thickness (0.1-0.7 mm). Further, quantification of aortic volume allowed calculation of vessel occlusion by the plaque. To validate microCT for future preclinical studies, we compared microCT data to intimal surface area (by using en face methodology). Both plaque surface area and plaque volume were in excellent correlation between microCT assessment and en face surface area (r(2) = 0.99, p<0.0001 and r(2) = 0.95, p<0.0001, respectively). MicroCT also identified internal characteristics of the lipid core and fibrous cap, which were confirmed pathologically as Stary type III-V lesions. These data validate the use of microCT technology to provide a more exact empirical measure of ex vivo plaque volume throughout the entire intact aorta in situ for the quantification of atherosclerosis in preclinical models.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Animales , Aorta Torácica/diagnóstico por imagen , Aorta Torácica/patología , Aterosclerosis/patología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Noqueados , Reproducibilidad de los Resultados
19.
ACS Med Chem Lett ; 2(11): 824-7, 2011 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-24900270

RESUMEN

All eight of the major active metabolites of (S)-2-((1S,2S,4R)-bicyclo[2.2.1]heptan-2-ylamino)-5-isopropyl-5-methylthiazol-4(5H)-one (AMG 221, compound 1), an inhibitor of 11ß-hydroxysteroid dehydrogenase type 1 that has entered the clinic for the treatment of type 2 diabetes, were synthetically prepared and confirmed by comparison with samples generated in liver microsomes. After further profiling, we determined that metabolite 2 was equipotent to 1 on human 11ß-HSD1 and had lower in vivo clearance and higher bioavailability in rat and mouse. Compound 2 was advanced into a pharmacodynamic model in mouse where it inhibited adipose 11ß-HSD1 activity.

20.
J Med Chem ; 53(11): 4481-7, 2010 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-20465278

RESUMEN

Thiazolones with an exo-norbornylamine at the 2-position and an isopropyl group on the 5-position are potent 11beta-HSD1 inhibitors. However, the C-5 center was prone to epimerization in vitro and in vivo, forming a less potent diastereomer. A methyl group was added to the C-5 position to eliminate epimerization, leading to the discovery of (S)-2-((1S,2S,4R)-bicyclo[2.2.1]heptan-2-ylamino)-5-isopropyl-5-methylthiazol-4(5H)-one (AMG 221). This compound decreased fed blood glucose and insulin levels and reduced body weight in diet-induced obesity mice.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacología , Tiazoles/administración & dosificación , Tiazoles/farmacología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/química , Administración Oral , Animales , Perros , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Humanos , Masculino , Ratones , Modelos Moleculares , Conformación Proteica , Ratas , Tiazoles/química , Tiazoles/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...