Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 10(1): 172-179, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38177662

RESUMEN

Many plant species translocate maternally synthesized specialized metabolites to the seed to protect the developing embryo and later the germinating seedling before it initiates its own de novo synthesis. While the transport route into the seed is well established for primary metabolites, no model exists for any class of specialized metabolites that move from maternal source tissue(s) to embryo. Glucosinolate seed loading in Arabidopsis depends on plasma membrane localized exporters (USUALLY MULTIPLE AMINO ACIDS MOVE IN AND OUT TRANSPORTERs, UMAMITs) and importers (GLUCOSINOLATE TRANSPORTERs, GTRs), but the critical barriers in the seed loading process remain unknown. Here we dissect the transport route of glucosinolates from their source in the reproductive organ to the embryo by re-introducing the transporters at specific apoplastic barriers in their respective mutant backgrounds. We find that UMAMIT exporters and GTR importers form a transporter cascade that is both essential and sufficient for moving glucosinolates across at least four plasma membrane barriers along the route. We propose a model in which UMAMITs export glucosinolates out of the biosynthetic cells to the apoplast, from where GTRs import them into the phloem stream, which moves them to the unloading zone in the chalazal seed coat. From here, the UMAMITs export them out of maternal tissue and ultimately, the GTRs import them into the embryo symplasm, where the seed-specific glucosinolate profile is established by enzymatic modifications. Moreover, we propose that methylsulfinylalkyl glucosinolates are the predominant mobile form in seed loading. Elucidation of the seed loading process of glucosinolates identifies barrier-specific targets for transport engineering strategies to eliminate or over-accumulate a specialized metabolite in seeds with minimal interruption of other cellular processes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Semillas/genética , Semillas/metabolismo
2.
Microb Cell Fact ; 22(1): 219, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880718

RESUMEN

Production of plant secondary metabolites in engineered microorganisms provides a scalable and sustainable alternative to their sourcing from nature or through chemical synthesis. However, the biosynthesis of many valuable plant-derived products relies on cytochromes P450 - enzymes notoriously difficult to express in microbes. To improve their expression in Escherichia coli, an arsenal of engineering strategies was developed, often paired with an extensive screening of enzyme variants. Here, attempting to identify a broadly applicable strategy, we systematically evaluated six common cytochrome P450 N-terminal modifications and their effect on in vivo activity of enzymes from the CYP79 and CYP83 families. We found that transmembrane domain truncation was the only modification with a significantly positive effect for all seven tested enzymes, increasing their product titres by 2- to 170-fold. Furthermore, when comparing the changes in the protein titre and product generation, we show that higher protein expression does not directly translate to higher in vivo activity, thus making the protein titre an unreliable screening target in the context of cell factories. We propose the transmembrane domain truncation as a first-line approach that enables the expression of wide range of highly active P450 enzymes in E. coli and circumvents the time-consuming screening process. Our results challenge the notion that the engineering strategy must be tailored for each individual cytochrome P450 enzyme and have the potential to simplify and accelerate the future design of E. coli cell factories.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Plantas
3.
Front Plant Sci ; 14: 1219783, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37528977

RESUMEN

Glucosinolates are key defense compounds of plants in Brassicales order, and their accumulation in seeds is essential for the protection of the next generation. Recently, members of the Usually Multiple Amino acids Move In and Out Transporter (UMAMIT) family were shown to be essential for facilitating transport of seed-bound glucosinolates from site of synthesis within the reproductive organ to seeds. Here, we set out to identify amino acid residues responsible for glucosinolate transport activity of the main seed glucosinolate exporter UMAMIT29 in Arabidopsis thaliana. Based on a predicted model of UMAMIT29, we propose that the substrate transporting cavity consists of 51 residues, of which four are highly conserved residues across all the analyzed homologs of UMAMIT29. A comparison of the putative substrate binding site of homologs within the brassicaceous-specific, glucosinolate-transporting clade with the non-brassicaceous-specific, non-glucosinolate-transporting UMAMIT32 clade identified 11 differentially conserved sites. When each of the 11 residues of UMAMIT29 was individually mutated into the corresponding residue in UMAMIT32, five mutant variants (UMAMIT29#V27F, UMAMIT29#M86V, UMAMIT29#L109V, UMAMIT29#Q263S, and UMAMIT29#T267Y) reduced glucosinolate transport activity over 75% compared to wild-type UMAMIT29. This suggests that these residues are key for UMAMIT29-mediated glucosinolate transport activity and thus potential targets for blocking the transport of glucosinolates to the seeds.

4.
Nature ; 617(7959): 132-138, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37076627

RESUMEN

Plant membrane transporters controlling metabolite distribution contribute key agronomic traits1-6. To eliminate anti-nutritional factors in edible parts of crops, the mutation of importers can block the accumulation of these factors in sink tissues7. However, this often results in a substantially altered distribution pattern within the plant8-12, whereas engineering of exporters may prevent such changes in distribution. In brassicaceous oilseed crops, anti-nutritional glucosinolate defence compounds are translocated to the seeds. However, the molecular targets for export engineering of glucosinolates remain unclear. Here we identify and characterize members of the USUALLY MULTIPLE AMINO ACIDS MOVE IN AND OUT TRANSPORTER (UMAMIT) family-UMAMIT29, UMAMIT30 and UMAMIT31-in Arabidopsis thaliana as glucosinolate exporters with a uniport mechanism. Loss-of-function umamit29 umamit30 umamit31 triple mutants have a very low level of seed glucosinolates, demonstrating a key role for these transporters in translocating glucosinolates into seeds. We propose a model in which the UMAMIT uniporters facilitate glucosinolate efflux from biosynthetic cells along the electrochemical gradient into the apoplast, where the high-affinity H+-coupled glucosinolate importers GLUCOSINOLATE TRANSPORTERS (GTRs) load them into the phloem for translocation to the seeds. Our findings validate the theory that two differently energized transporter types are required for cellular nutrient homeostasis13. The UMAMIT exporters are new molecular targets to improve nutritional value of seeds of brassicaceous oilseed crops without altering the distribution of the defence compounds in the whole plant.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Glucosinolatos , Proteínas de Transporte de Membrana , Semillas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Floema/metabolismo , Reproducibilidad de los Resultados , Semillas/metabolismo
5.
Appl Environ Microbiol ; 88(22): e0097822, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36326240

RESUMEN

Intake of brassicaceous vegetables such as cabbage is associated with numerous health benefits. The major defense compounds in the Brassicales order are the amino acid-derived glucosinolates that have been associated with the health-promoting effects. This has primed a desire to build glucosinolate-producing microbial cell factories as a stable and reliable source. Here, we established-for the first time-production of the phenylalanine-derived benzylglucosinolate (BGLS) in Saccharomyces cerevisiae using two different engineering strategies: stable genome integration versus plasmid-based introduction of the biosynthetic genes. Although the plasmid-engineered strain showed a tendency to generate higher expression level of each gene (except CYP83B1) in the biosynthetic pathway, the genome-engineered strain produced 8.4-fold higher BGLS yield compared to the plasmid-engineered strain. Additionally, we optimized the genome-engineered strain by overexpressing the entry point genes CYP79A2 and CYP83B1, resulting in a 2-fold increase in BGLS production but also a 4.8-fold increase in the level of the last intermediate desulfo-benzylglucosinolate (dsBGLS). We applied several approaches to alleviate the metabolic bottleneck in the step where dsBGLS is converted to BGLS by sulfotransferase, SOT16 dependent on 3'-phosphoadenosine-5'-phosphosulfate (PAPS). BGLS production increased 1.7-fold by overexpressing SOT16 and 1.7-fold by introducing APS kinase, APK1, from Arabidopsis thaliana involved in the PAPS regeneration cycle. Modulating the endogenous sulfur assimilatory pathway through overexpression of MET3 and MET14 resulted in 2.4-fold to 12.81 µmol/L (=5.2 mg/L) for BGLS production. IMPORTANCE Intake of brassicaceous vegetables such as cabbage is associated with numerous health benefits. The major defense compounds in the Brassicales order are the amino acid-derived glucosinolates that have been associated with the health-promoting effects. This has primed a desire to build glucosinolate-producing microbial cell factories as a stable and reliable source. In this study, we engineered for the first time the production of phenylalanine-derived benzylglucosinolate in Saccharomyces cerevisiae with two engineering strategies: stable genome integration versus plasmid-based introduction of the biosynthetic genes. Although the plasmid-engineered strain generally showed higher expression level of each gene (except CYP83B1) in the biosynthetic pathway, the genome-engineered strain produced higher production level of benzylglucosinolate. Based on the genome-engineered strain, the benzylglucosinolate level was improved by optimization. Our study compared different approaches to engineer a multigene pathway for production of the plant natural product benzylglucosinolate. This may provide potential application in industrial biotechnology.


Asunto(s)
Arabidopsis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glucosinolatos/metabolismo , Arabidopsis/genética , Plásmidos/genética , Fenilalanina/metabolismo , Aminoácidos/metabolismo
6.
Nat Prod Rep ; 39(8): 1643, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35586985

RESUMEN

Correction for 'The ins and outs of transporters at plasma membrane and tonoplast in plant specialized metabolism' by Deyang Xu and Barbara Ann Halkier, Nat. Prod. Rep., 2022, https://doi.org/10.1039/d2np00016d.

7.
Nat Prod Rep ; 39(7): 1483-1491, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35481602

RESUMEN

Covering: up to 2022Plants are organic chemists par excellence and produce an amazing array of diverse chemical structures. Whereas primary metabolites are essential for all living organisms and highly conserved, the specialized metabolites constitute the taxonomy-specific chemical languages that are key for fitness and survival. Allocation of plants' wide array of specialized metabolites in patterns that are fine-tuned spatiotemporally is essential for adaptation to the ever-changing environment and requires transport processes. Thus advancing our knowledge about transporters is important as also evidenced by the increasing number of transporters that control key quality traits in agriculture. In this review, we will highlight recently identified transporters and new insights related to already known transporters of plant specialized metabolites. Focus will be on the transport mechanism revealed by the biochemical characterization and how that links to its function in planta.


Asunto(s)
Plantas , Vacuolas , Membrana Celular , Proteínas de Transporte de Membrana/metabolismo , Plantas/metabolismo , Vacuolas/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34795057

RESUMEN

Numerous plants protect themselves from attackers by using specialized metabolites. The biosynthesis of these deterrent, often toxic metabolites is costly, as their synthesis diverts energy and resources on account of growth and development. How plants diversify investments into growth and defense is explained by the optimal defense theory. The central prediction of the optimal defense theory is that plants maximize growth and defense by concentrating specialized metabolites in tissues that are decisive for fitness. To date, supporting physiological evidence relies on the correlation between plant metabolite presence and animal feeding preference. Here, we use glucosinolates as a model to examine the effect of changes in chemical defense distribution on feeding preference. Taking advantage of the uniform glucosinolate distribution in transporter mutants, we show that high glucosinolate accumulation in tissues important to fitness protects them by guiding larvae of a generalist herbivore to feed on other tissues. Moreover, we show that the mature leaves of Arabidopsis thaliana supply young leaves with glucosinolates to optimize defense against herbivores. Our study provides physiological evidence for the central hypothesis of the optimal defense theory and sheds light on the importance of integrating glucosinolate biosynthesis and transport for optimizing plant defense.


Asunto(s)
Conducta Alimentaria/fisiología , Herbivoria/fisiología , Defensa de la Planta contra la Herbivoria/fisiología , Plantas/metabolismo , Animales , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Larva/metabolismo , Hojas de la Planta/metabolismo
9.
Plant J ; 106(4): 978-992, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33624307

RESUMEN

2-Phenylethylglucosinolate (2PE) derived from homophenylalanine is present in plants of the Brassicales order as a defense compound. It is associated with multiple biological properties, including deterrent effects on pests and antimicrobial and health-promoting functions, due to its hydrolysis product 2-phenylethyl isothiocyanate, which confers 2PE as a potential application in agriculture and industry. In this study, we characterized the putative key genes for 2PE biosynthesis from Barbarea vulgaris W.T. Aiton and demonstrated the feasibility of engineering 2PE production in Nicotiana benthamiana Domin. We used different combinations of genes from B. vulgaris and Arabidopsis thaliana (L.) Heynh. to demonstrate that: (i) BvBCAT4 performed more efficiently than AtBCAT4 in biosynthesis of both homophenylalanine and dihomomethionine; (ii) MAM1 enzymes were critical for the chain-elongated profile, while CYP79F enzymes accepted both chain-elongated methionine and homophenylalanine; (iii) aliphatic but not aromatic core structure pathway catalyzed the 2PE biosynthesis; (iv) a chimeric pathway containing BvBCAT4, BvMAM1, AtIPMI and AtIPMDH1 resulted in a two-fold increase in 2PE production compared with the B. vulgaris-specific chain elongation pathway; and (v) profiles of chain-elongated products and glucosinolates partially mirrored the profiles in the gene donor plant, but were wider in N. benthamiana than in the native plants. Our study provides a strategy to produce the important homophenylalanine and 2PE in a heterologous host. Furthermore, chimeric engineering of the complex 2PE biosynthetic pathway enabled detailed understanding of catalytic properties of individual enzymes - a prerequisite for understanding biochemical evolution. The new-to-nature gene combinations have the potential for application in biotechnological and plant breeding.


Asunto(s)
Aminobutiratos/metabolismo , Arabidopsis/genética , Barbarea/genética , Glucosinolatos/metabolismo , Nicotiana/metabolismo , Vías Biosintéticas , Ingeniería Genética , Hidrólisis , Isotiocianatos/metabolismo , Nicotiana/genética , Transgenes
10.
Front Plant Sci ; 11: 808, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612621

RESUMEN

In Arabidopsis thaliana, the heterodimeric isopropylmalate isomerase (IPMI) is composed of a single large (IPMI LSU1) and one of three different small subunits (IPMI SSU1 to 3). The function of IPMI is defined by the small subunits. IPMI SSU1 is required for Leu biosynthesis and has previously also been proposed to be involved in the first cycle of Met chain elongation, the first phase of the synthesis of Met-derived glucosinolates. IPMI SSU2 and IPMI SSU3 participate in the Met chain elongation pathway. Here, we investigate the role of the three IPMI SSUs through the analysis of the role of the substrate recognition region spanning five amino acids on the substrate specificity of IPMI SSU1. Furthermore, we analyze in detail the expression pattern of fluorophore-tagged IPMI SSUs throughout plant development. Our study shows that the substrate recognition region that differs between IPMI SSU1 and the other two IMPI SSUs determines the substrate preference of IPMI. Expression of IPMI SSU1 is spatially separated from the expression of IPMI SSU2 and IPMI SSU3, and IPMI SSU1 is found in small plastids, whereas IMPI SSU2 and SSU3 are found in chloroplasts. Our data show a distinct role for IMPI SSU1 in Leu biosynthesis and for IMPI SSU2 and SSU3 in the Met chain elongation pathway.

11.
Plant Cell Environ ; 43(6): 1571-1583, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32275065

RESUMEN

Powdery mildew is a fungal disease that affects a wide range of plants and reduces crop yield worldwide. As obligate biotrophs, powdery mildew fungi manipulate living host cells to suppress defence responses and to obtain nutrients. Members of the plant order Brassicales produce indole glucosinolates that effectively protect them from attack by non-adapted fungi. Indol-3-ylmethyl glucosinolate is constitutively produced in the phloem and transported to epidermal cells for storage. Upon attack, indol-3-ylmethyl glucosinolate is activated by CYP81F2 to provide broad-spectrum defence against fungi. How de novo biosynthesis and transport contribute to defence of powdery mildew-attacked epidermal cells is unknown. Bioassays and glucosinolate analysis demonstrate that GTR glucosinolate transporters are not involved in antifungal defence. Using quantitative live-cell imaging of fluorophore-tagged markers, we show that accumulation of the glucosinolate biosynthetic enzymes CYP83B1 and SUR1 is induced in epidermal cells attacked by the non-adapted barley powdery mildew Blumeria graminis f.sp. hordei. By contrast, glucosinolate biosynthesis is attenuated during interaction with the virulent powdery mildew Golovinomyces orontii. Interestingly, SUR1 induction is delayed during the Golovinomyces orontii interaction. We conclude that epidermal de novo synthesis of indol-3-ylmethyl glucosinolate contributes to CYP81F2-mediated broad-spectrum antifungal resistance and that adapted powdery mildews may target this process.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Ascomicetos/fisiología , Resistencia a la Enfermedad , Glucosinolatos/biosíntesis , Enfermedades de las Plantas/microbiología , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Indoles , Epidermis de la Planta/citología , Proteínas Recombinantes/metabolismo
12.
Front Plant Sci ; 11: 57, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117393

RESUMEN

Glucosinolates (GLSs) are amino acid-derived defense compounds characteristic of the Brassicales order. Cytochromes P450s of the CYP79 family are the entry point into the biosynthetic pathway of the GLS core structure and catalyze the conversion of amino acids to oximes. In Arabidopsis thaliana, CYP79A2, CYP79B2, CYP79B3, CYP79F1, and CYP79F2 have been functionally characterized and are responsible for the biosynthesis of phenylalanine-, tryptophan-, and methionine-derived GLSs, respectively. However, the substrate(s) for CYP79C1 and CYP79C2 were unknown. Here, we investigated the function of CYP79C1 and CYP79C2 by transiently co-expressing the genes together with three sets of remaining genes required for GLS biosynthesis in Nicotiana benthamiana. Co-expression of CYP79C2 with either the aliphatic or aromatic core structure pathways resulted in the production of primarily leucine-derived 2-methylpropyl GLS and phenylalanine-derived benzyl GLS, along with minor amounts of GLSs from isoleucine, tryptophan, and tyrosine. Co-expression of CYP79C1 displayed minor amounts of GLSs from valine, leucine, isoleucine, and phenylalanine with the aliphatic core structure pathway, and similar GLS profile (except the GLS from valine) with the aromatic core structure pathway. Additionally, we co-expressed CYP79C1 and CYP79C2 with the chain elongation and aliphatic core structure pathways. With the chain elongation pathway, CYP79C2 still mainly produced 2-methylpropyl GLS derived from leucine, accompanied by GLSs derived from isoleucine and from chain-elongated mono- and dihomoleucine, but not from phenylalanine. However, co-expression of CYP79C1 only resulted in GLSs derived from chain-elongated amino acid substrates, dihomoleucine and dihomomethionine, when the chain elongation pathway was present. This shows that CYP79 activity depends on the specific pathways co-expressed and availability of amino acid precursors, and that description of GLS core structure pathways as "aliphatic" and "aromatic" pathways is not suitable, especially in an engineering context. This is the first characterization of members of the CYP79C family. Co-expression of CYP79 enzymes with engineered GLS pathways in N. benthamiana is a valuable tool for simultaneous testing of substrate specificity against multiple amino acids.

13.
Mol Plant ; 12(11): 1474-1484, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31260813

RESUMEN

In the phloem cap region of Arabidopsis plants, sulfur-rich cells (S-cells) accumulate >100 mM glucosinolates (GLS), but are biosynthetically inactive. The source and route of S-cell-bound GLS remain elusive. In this study, using single-cell sampling and scanning electron microscopy with energy-dispersive X-ray analysis we show that two GLS importers, NPF2.10/GTR1 and NPF2.11/GTR2, are critical for GLS accumulation in S-cells, although they are not localized in the S-cells. Comparison of GLS levels in S-cells in multiple combinations of homo- and heterografts of gtr1 gtr2, biosynthetic null mutant and wild-type plants indicate that S-cells accumulate GLS via symplasmic connections either directly from neighboring biosynthetic cells or indirectly to non-neighboring cells expressing GTR1/2. Distinct sources and transport routes exist for different types of GLS, and vary depending on the position of S-cells in the inflorescence stem. Based on these findings, we propose a model illustrating the GLS transport routes either directly from biosynthetic cells or via GTR-mediated import from apoplastic space radially into a symplasmic domain, wherein the S-cells are the ultimate sink. Similarly, we observed accumulation of the cyanogenic glucoside defensive compounds in high-turgor cells in the phloem cap of Lotus japonicus, suggesting that storage of defensive compounds in high-turgor cells may be a general mechanism for chemical protection of the phloem cap.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Inflorescencia/citología , Floema/citología , Azufre/metabolismo , Arabidopsis/inmunología , Inflorescencia/metabolismo , Modelos Biológicos , Floema/metabolismo , Transporte de Proteínas
14.
Biosci Rep ; 39(7)2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31175145

RESUMEN

Methylthioalkylmalate synthases catalyse the committing step of amino acid chain elongation in glucosinolate biosynthesis. As such, this group of enzymes plays an important role in determining the glucosinolate composition of Brassicaceae species, including Arabidopsis thaliana Based on protein structure modelling of MAM1 from A. thaliana and analysis of 57 MAM sequences from Brassicaceae species, we identified four polymorphic residues likely to interact with the 2-oxo acid substrate. Through site-directed mutagenesis, the natural variation in these residues and the effect on product composition were investigated. Fifteen MAM1 variants as well as the native MAM1 and MAM3 from A. thaliana were characterised by heterologous expression of the glucosinolate chain elongation pathway in Escherichia coli Detected products derived from leucine, methionine or phenylalanine were elongated with up to six methylene groups. Product profile and accumulation were changed in 14 of the variants, demonstrating the relevance of the identified residues. The majority of the single amino acid substitutions decreased the length of methionine-derived products, while approximately half of the substitutions increased the phenylalanine-derived products. Combining two substitutions enabled the MAM1 variant to increase the number of elongation rounds of methionine from three to four. Notably, characterisation of the native MAMs indicated that MAM1 and not MAM3 is responsible for homophenylalanine production. This hypothesis was confirmed by glucosinolate analysis in mam1 and mam3 mutants of A. thaliana.


Asunto(s)
2-Isopropilmalato Sintasa/genética , Proteínas de Arabidopsis/genética , Glucosinolatos/genética , Oxo-Ácido-Liasas/genética , Especificidad por Sustrato/genética , Aminoácidos/genética , Arabidopsis/enzimología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Glucosinolatos/biosíntesis , Leucina/genética , Metionina/genética , Mutagénesis
15.
J Exp Bot ; 70(16): 4305-4317, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-30976798

RESUMEN

The phloem cap of Arabidopsis thaliana accumulates glucosinolates that yield toxic catabolites upon damage-induced hydrolysis. These defence compounds are stored in high concentrations in millimetre long S-cells. At early stages of development, S-cells initiate a process indicative of programmed cell death. How these cells are maintained in a highly turgescent state following this process is currently unknown. Here, we show that S-cells undergo substantial morphological changes during early differentiation. Vacuolar collapse and rapid clearance of the cytoplasm did not occur until senescence. Instead, smooth endoplasmic reticulum, Golgi bodies, vacuoles, and undifferentiated plastids were observed. Lack of chloroplasts indicates that S-cells depend on metabolite supply from neighbouring cells. Interestingly, TEM revealed numerous plasmodesmata between S-cells and neighbouring cells. Photoactivation of a symplasmic tracer showed coupling with neighbouring cells that are involved in glucosinolate synthesis. Hence, symplasmic transport might contribute to glucosinolate storage in S-cells. To investigate the fate of S-cells, we traced them in flower stalks from the earliest detectable stages to senescence. At late stages, S-cells were shown to deposit thick secondary cell walls and transform into phloem fibres. Thus, phloem fibres in the herbaceous plant Arabidopsis pass a pronounced phase of chemical defence during early stages of development.


Asunto(s)
Arabidopsis/metabolismo , Glucosinolatos/biosíntesis , Floema/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Floema/genética , Plasmodesmos/genética , Plasmodesmos/metabolismo
17.
Appl Microbiol Biotechnol ; 103(9): 3727-3736, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30915502

RESUMEN

Shea tree (Vitellaria paradoxa) is one economically important plant species that mainly distributes in West Africa. Shea butter extracted from shea fruit kernels can be used as valuable products in the food and cosmetic industries. The most valuable composition in shea butter was one kind of triacylglycerol (TAG), 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0-C18:1-C18:0). However, shea butter production is limited and little is known about the genetic information of shea tree. In this study, we tried to reveal genetic information of shea tree and identified shea TAG biosynthetic genes for future shea butter production in yeast cell factories. First, we measured lipid content, lipid composition, and TAG composition of seven shea fruits at different ripe stages. Then, we performed transcriptome analysis on two shea fruits containing obviously different levels of SOS and revealed a list of TAG biosynthetic genes potentially involved in TAG biosynthesis. In total, 4 glycerol-3-phosphate acyltransferase (GPAT) genes, 8 lysophospholipid acyltransferase (LPAT) genes, and 11 diacylglycerol acyltransferase (DGAT) genes in TAG biosynthetic pathway were predicted from the assembled transcriptome and 14 of them were cloned from shea fruit cDNA. Furthermore, the heterologous expression of these 14 potential GPAT, LPAT, and DGAT genes in Saccharomyces cerevisiae changed yeast fatty acid and lipid profiles, suggesting that they functioned in S. cerevisiae. Moreover, two shea DGAT genes, VpDGAT1 and VpDGAT7, were identified as functional DGATs in shea tree, showing they might be useful for shea butter (SOS) production in yeast cell factories.


Asunto(s)
Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sapotaceae/genética , Triglicéridos/biosíntesis , Levaduras/genética , Levaduras/metabolismo , Vías Biosintéticas , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Frutas/genética , Frutas/metabolismo , Ingeniería Metabólica , Sapotaceae/enzimología , Sapotaceae/metabolismo , Transcriptoma
18.
Metab Eng ; 54: 24-34, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30831267

RESUMEN

Microbial production of plant specialised metabolites is challenging as the biosynthetic pathways are often complex and can contain enzymes, which function is not supported in traditional production hosts. Glucosinolates are specialised metabolites of strong commercial interest due to their health-promoting effects. In this work, we engineered the production of benzyl glucosinolate in Escherichia coli. We systematically optimised the production levels by first screening different expression strains and by modification of growth conditions and media compositions. This resulted in production from undetectable to approximately 4.1 µM benzyl glucosinolate, but also approximately 3.7 µM of desulfo-benzyl glucosinolate, the final intermediate of this pathway. Additional optimisation of pathway flux through entry point cytochrome P450 enzymes and PAPS-dependent sulfotransferase increased the production additionally 5-fold to 20.3 µM (equivalent to 8.3 mg/L) benzyl glucosinolate.


Asunto(s)
Vías Biosintéticas/genética , Escherichia coli , Glucosinolatos , Ingeniería Metabólica , Microorganismos Modificados Genéticamente , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glucosinolatos/biosíntesis , Glucosinolatos/genética , Microorganismos Modificados Genéticamente/enzimología , Microorganismos Modificados Genéticamente/genética , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
19.
J Integr Plant Biol ; 60(12): 1231-1248, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30080309

RESUMEN

Glucosinolates (GLSs) are sulfur-rich, amino acid-derived defense compounds characteristic of the Brassicales order. In the past, GLSs were mostly known as anti-nutritional factors in fodder, biopesticides in agriculture, and flavors in condiments such as mustard. However, in recent times, GLSs have received increased attention as promoters of human health. This has spurred intensive research towards generating rich sources of health-promoting GLSs. We provide a comprehensive overview of the biotechnological approaches applied to reach this goal. This includes optimization of GLS production and composition in native, GLS-producing plants, including hairy root and cell cultures thereof, as well as synthetic biology approaches in heterologous hosts, such as tobacco and the microbial organisms Escherichia coli and Saccharomyces cerevisiae. The progress using these different approaches is discussed.


Asunto(s)
Biotecnología/métodos , Glucosinolatos/metabolismo , Nicotiana/metabolismo
20.
Phytochem Rev ; 17(2): 211-227, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755303

RESUMEN

Sequential enzymes in biosynthetic pathways are organized in metabolons. It is challenging to provide experimental evidence for the existence of metabolons as biosynthetic pathways are composed of highly dynamic protein-protein interactions. Many different methods are being applied, each with strengths and weaknesses. We will present and evaluate several techniques that have been applied in providing evidence for the orchestration of the biosynthetic pathways of cyanogenic glucosides and glucosinolates in metabolons. These evolutionarily related pathways have ER-localized cytochromes P450 that are proposed to function as anchoring site for assembly of the enzymes into metabolons. Additionally, we have included commonly used techniques, even though they have not been used (yet) on these two pathways. In the review, special attention will be given to less-exploited fluorescence-based methods such as FCS and FLIM. Ultimately, understanding the orchestration of biosynthetic pathways may contribute to successful engineering in heterologous hosts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA