Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
New Phytol ; 237(4): 1229-1241, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373000

RESUMEN

Optimal stomatal theory predicts that stomata operate to maximise photosynthesis (Anet ) and minimise transpirational water loss to achieve optimal intrinsic water-use efficiency (iWUE). We tested whether this theory can predict stomatal responses to elevated atmospheric CO2 (eCO2 ), and whether it can capture differences in responsiveness among woody plant functional types (PFTs). We conducted a meta-analysis of tree studies of the effect of eCO2 on iWUE and its components Anet and stomatal conductance (gs ). We compared three PFTs, using the unified stomatal optimisation (USO) model to account for confounding effects of leaf-air vapour pressure difference (D). We expected smaller gs , but greater Anet , responses to eCO2 in gymnosperms compared with angiosperm PFTs. We found that iWUE increased in proportion to increasing eCO2 in all PFTs, and that increases in Anet had stronger effects than reductions in gs . The USO model correctly captured stomatal behaviour with eCO2 across most datasets. The chief difference among PFTs was a lower stomatal slope parameter (g1 ) for the gymnosperm, compared with angiosperm, species. Land surface models can use the USO model to describe stomatal behaviour under changing atmospheric CO2 conditions.


Asunto(s)
Magnoliopsida , Árboles , Árboles/fisiología , Dióxido de Carbono/farmacología , Cycadopsida , Hojas de la Planta/fisiología , Fotosíntesis/fisiología , Agua/fisiología , Estomas de Plantas/fisiología
2.
Plant Cell Environ ; 41(2): 300-313, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29226972

RESUMEN

Physiological processes of terrestrial plants regulate the land-atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or CO2 concentration ([CO2 ]) in a 3-year field experiment with mature boreal Norway spruce. We found that elevated [CO2 ] decreased photosynthetic carboxylation capacity (-23% at 25 °C) and increased shoot respiration (+64% at 15 °C), while warming had no significant effects. Shoot respiration, but not photosynthetic capacity, exhibited seasonal acclimation. Stomatal conductance at light saturation and a vapour pressure deficit of 1 kPa was unaffected by elevated [CO2 ] but significantly decreased (-27%) by warming, and the ratio of intercellular to ambient [CO2 ] was enhanced (+17%) by elevated [CO2 ] and decreased (-12%) by warming. Many of these responses differ from those typically observed in temperate tree species. Our results show that long-term physiological acclimation dampens the initial stimulation of plant net carbon assimilation to elevated [CO2 ], and of plant water use to warming. Models that do not account for these responses may thus overestimate the impacts of climate change on future boreal vegetation-atmosphere interactions.


Asunto(s)
Aclimatación , Picea/fisiología , Aclimatación/fisiología , Dióxido de Carbono , Calor , Fotosíntesis , Estrés Fisiológico , Temperatura
3.
Tree Physiol ; 33(11): 1177-91, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24169104

RESUMEN

Accumulated carbon uptake, apparent quantum yield (AQY) and light-saturated net CO2 assimilation (Asat) were used to assess the responses of photosynthesis to environmental conditions during spring for three consecutive years. Whole-tree chambers were used to expose 40-year-old field-grown Norway spruce trees in northern Sweden to an elevated atmospheric CO2 concentration, [CO2], of 700 µmol CO2 mol(-1) (CE) and an air temperature (T) between 2.8 and 5.6 °C above ambient T (TE), during summer and winter. Net shoot CO2 exchange (Anet) was measured continuously on 1-year-old shoots and was used to calculate the accumulated carbon uptake and daily Asat and AQY. The accumulated carbon uptake, from 1 March to 30 June, was stimulated by 33, 44 and 61% when trees were exposed to CE, TE, and CE and TE combined, respectively. Air temperature strongly influenced the timing and extent of photosynthetic recovery expressed as AQY and Asat during the spring. Under elevated T (TE), the recovery of AQY and Asat commenced ∼10 days earlier and the activity of these parameters was significantly higher throughout the recovery period. In the absence of frost events, the photosynthetic recovery period was less than a week. However, frost events during spring slowed recovery so that full recovery could take up to 60 days to complete. Elevated [CO2] stimulated AQY and Asat on average by ∼10 and ∼50%, respectively, throughout the recovery period, but had minimal or no effect on the onset and length of the photosynthetic recovery period during the spring. However, AQY, Asat and Anet all recovered at significantly higher T (average +2.2 °C) in TE than in TA, possibly caused by acclimation or by shorter days and lower light levels during the early part of the recovery in TE compared with TA. The results suggest that predicted future climate changes will cause prominent stimulation of photosynthetic CO2 uptake in boreal Norway spruce forest during spring, mainly caused by elevated T, but also elevated [CO2]. However, the effects of elevated T may not be linearly extrapolated to future warmer climates.


Asunto(s)
Dióxido de Carbono/fisiología , Carbono/metabolismo , Fotosíntesis , Picea/fisiología , Cambio Climático , Noruega , Brotes de la Planta/fisiología , Transpiración de Plantas , Estaciones del Año , Temperatura , Árboles/fisiología
4.
Tree Physiol ; 33(11): 1156-76, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23525155

RESUMEN

Photosynthesis is highly responsive to environmental and physiological variables, including phenology, foliage nitrogen (N) content, atmospheric CO2 concentration ([CO2]), irradiation (Q), air temperature (T) and vapour pressure deficit (D). Each of these responses is likely to be modified by long-term changes in climatic conditions such as rising air temperature and [CO2]. When modelling photosynthesis under climatic changes, which parameters are then most important to calibrate for future conditions? To assess this, we used measurements of shoot carbon assimilation rates and microclimate conditions collected at Flakaliden, northern Sweden. Twelve 40-year-old Norway spruce trees were enclosed in whole-tree chambers and exposed to elevated [CO2] and elevated air temperature, separately and in combination. The treatments imposed were elevated temperature, +2.8 °C in July/August and +5.6 °C in December above ambient, and [CO2] (ambient CO2 ∼370 µ mol mol(-1), elevated CO2 ∼700 µ mol mol(-1)). The relative importance of parameterization of Q, T and D responses for effects on the photosynthetic rate, expressed on a projected needle area, and the annual shoot carbon uptake was quantified using an empirical shoot photosynthesis model, which was developed and fitted to the measurements. The functional form of the response curves was established using an artificial neural network. The [CO2] treatment increased annual shoot carbon (C) uptake by 50%. Most important was effects on the light response curve, with a 67% increase in light-saturated photosynthetic rate, and a 52% increase in the initial slope of the light response curve. An interactive effect of light saturated photosynthetic rate was found with foliage N status, but no interactive effect for high temperature and high CO2. The air temperature treatment increased the annual shoot C uptake by 44%. The most important parameter was the seasonality, with an elongation of the growing season by almost 4 weeks. The temperature response curve was almost flat over much of the temperature range. A shift in temperature optimum had thus an insignificant effect on modelled annual shoot C uptake. The combined temperature and [CO2] treatment resulted in a 74% increase in annual shoot C uptake compared with ambient conditions, with no clear interactive effects on parameter values.


Asunto(s)
Dióxido de Carbono/fisiología , Carbono/metabolismo , Fotosíntesis , Picea/fisiología , Cambio Climático , Modelos Teóricos , Nitrógeno/metabolismo , Noruega , Brotes de la Planta/fisiología , Transpiración de Plantas , Estaciones del Año , Plantones/fisiología , Suelo/química , Temperatura , Árboles/fisiología
5.
Tree Physiol ; 29(4): 467-81, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19203983

RESUMEN

Effects of ambient and elevated temperature and atmospheric carbon dioxide concentration ([CO2]) on CO2 assimilation rate and the structural and phenological development of shoots during their first growing season were studied in 45-year-old Norway spruce trees (Picea abies (L.) Karst.) enclosed in whole-tree chambers. Continuous measurements of net assimilation rate (NAR) in individual buds and shoots were made from early bud development to late August in two consecutive years. The largest effect of elevated temperature (TE) was manifest early in the season as an earlier start and completion of shoot length development, and a 1-3-week earlier shift from negative to positive NAR compared with the ambient temperature (TA) treatments. The largest effect of elevated [CO2] (CE) was found later in the season, with a 30% increase in maximum NAR compared with trees in the ambient [CO2] treatments (CA), and shoots assimilating their own mass in terms of carbon earlier in the CE treatments than in the CA treatments. Once the net carbon assimilation compensation point (NACP) had been reached, TE had little or no effect on the development of NAR performance, whereas CE had little effect before the NACP. No interactive effects of TE and CE on NAR were found. We conclude that in a climate predicted for northern Sweden in 2100, current-year shoots of P. abies will assimilate their own mass in terms of carbon 20-30 days earlier compared with the current climate, and thereby significantly contribute to canopy assimilation during their first year.


Asunto(s)
Dióxido de Carbono/metabolismo , Picea/metabolismo , Temperatura , Carbono/metabolismo , Dióxido de Carbono/farmacología , Luz , Fotosíntesis , Picea/efectos de los fármacos , Picea/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo
6.
Tree Physiol ; 27(5): 749-56, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17267365

RESUMEN

Characterization of soil respiration rates and delta(13)C values of soil-respired CO(2) are often based on measurements at a particular time of day. A study by Gower et al. (2001) in a boreal forest demonstrated diurnal patterns of soil CO(2) flux using transparent measurement chambers that included the understory vegetation. It is unclear whether these diurnal patterns were solely the result of photosynthetic CO(2) uptake during the day by the understory or whether there were underlying trends in soil respiration, perhaps driven by plant root allocation, as recently demonstrated in Mediterranean oak savannah. We undertook intensive sampling campaigns in a boreal Picea abies L. Karst. forest to investigate whether diurnal variations in soil respiration rate and stable carbon isotope ratio (delta(13)C) exist in this ecosystem when no understory vegetation is present in the measurement chamber. Soil respiration rates and delta(13)C were measured on plots in which trees were either girdled (to terminate the fraction of soil respiration directly dependent on recent photosynthate from the trees), or not girdled, every 4 h over two 48-hour cycles during the growth season of 2004. Shoot photosynthesis and environmental parameters were measured concurrently. No diurnal patterns in soil respiration rates and delta(13)C were observed in either treatment, despite substantial variations in climatic conditions and shoot photosynthetic rates in non-girdled trees. Consequently, assessment of daily soil respiration rates and delta(13)C in boreal forest systems by single, instantaneous daily measurements does not appear to be confounded by substantial diurnal variation.


Asunto(s)
Dióxido de Carbono/metabolismo , Ritmo Circadiano/fisiología , Ecosistema , Microbiología del Suelo , Suelo , Isótopos de Carbono/metabolismo , Clima , Floema/metabolismo , Fotosíntesis/fisiología , Suecia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...