Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38926196

RESUMEN

INTRODUCTION: The Zadek Osteotomy has been described as an effective technique for the treatment of insertional Achilles tendinopathy. Recently, this strategy has been modified using minimally invasive techniques. A learning curve has been observed in many minimally invasive procedures in foot and ankle surgery. This retrospective study first intended to evaluate if there is a learning curve associated with the percutaneous Zadek Osteotomy. Further, if a learning curve was observed, we planned to assess the data for associated changes in complications and postoperative outcomes. METHODS: A retrospective analysis of 98 patients who underwent percutaneous Zadek Osteotomy was performed. Patient charts were reviewed for operative times, complications, union rates, and Foot Function Index (FFI) and Visual Analogue Scale (VAS) scores. Analysis of variance was utilized to assess for differences between groups of cases. RESULTS: Patients included 61 females and 37 males. Mean age was 51.28 ± 11.12 (range 28-81) years. Mean follow-up time was 42.07 ± 12.99 (range 24-65) months. Significant increases in operative times were observed in cases 1-14 when compared to cases 15-98 (p < 0.001). Improvements in FFI and VAS scores were observed at final follow-up within each case group (p < 0.001); there were no differences detected in FFI or VAS scores between groups of cases. There was no difference detected in number of complications between intervals of cases. CONCLUSION: A learning curve was observed for the percutaneous Zadek Osteotomy, which was overcome around case 14. This learning curve was only observed in terms of procedure length. A surgeon's level of inexperience with the technique does not appear to affect functional outcomes, nonunion, or need for revision. LEVEL OF EVIDENCE IV: Data will not be deposited in a repository.

2.
Med Res Arch ; 12(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38770116

RESUMEN

Background: Obstructive sleep apnea (OSA) has been linked to cytokine-mediated chronic inflammatory states. Continuous positive airway pressure (CPAP) is an established therapy for OSA, but its effects on inflammation remain unclear. A recent study from our group identified soluble cytokine receptors altered in OSA patients and modified by CPAP adherence. However, the upstream regulatory pathways responsible for these shifts in proinflammatory cascades with OSA and CPAP therapy remained unknown. Accordingly, this study mapped OSA and CPAP-modulated soluble cytokine receptors to specific microRNAs and then tested the hypothesis that OSA and CPAP adherence shift cytokine-related microRNA expression profiles. Study Design: Plasma samples were collected from patients with OSA (n=50) at baseline and approximately 90 days after CPAP initiation and compared to referent control subjects (n=10). Patients with OSA were further divided into cohorts defined by adherence vs nonadherence to CPAP therapy. The microRNAs that mapped to soluble cytokine receptors of interest were subjected to quantitative polymerase chain reaction. Results: At baseline, increased hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-16-5p, hsa-miR-195-5p, hsa-miR-424-5p, hsa-miR-223-3p, and hsa-miR-223-5p were observed in patients with OSA compared to controls (p<0.05). In CPAP adherent patients (n=22), hsa-miR233-3p and hsa-miR233-5p decreased at follow-up (p<0.05) whereas there was no change in miR levels from baseline in non-adherent CPAP patients (n=28). The miRs hsa-miR233-3p and hsa-miR233-5p mapped to both proinflammatory and innate immunity activation; the inflammasome. Conclusion: A specific set of microRNAs, including hsa-miR233-3p and hsa-miR233-5p, may serve as a marker of inflammatory responses in patients with OSA, and be used to assess attenuation of inflammasome activation by CPAP.

3.
Foot Ankle Surg ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38692981

RESUMEN

BACKGROUND: Insertional Achilles tendinopathy (IAT) is a common pathology with multiple surgical interventions available for treatment. The Zadek, dorsal closing wedge calcaneal osteotomy (ZO) has been demonstrated to be effective treatment of IAT. There have been various recommendations in the literature as to what measurement of wedge removal should be considered ideal to produce greatest postoperative range of motion (ROM), thus postoperative biomechanical potential. Accordingly, the purpose of this cadaveric study was to assess the range of motion achieved after various measurements of wedge removal by ZO. METHODS: The ZO was performed on six cadaveric specimens. A 7.5 mm and 15 mm wedge osteotomy was marked and sequentially completed on each specimen. Lateral fluoroscopic imaging was utilized to take preoperative and postoperative ROM measurements for each osteotomy. Dorsiflexion (DF) and plantarflexion (PF) ROM arcs were measured for each wedge size and compared by t-test. Effect sizes were calculated by Cohen's d analysis. RESULTS: Maximal DF was 110.87 ± 12.97 deg in the pre-osteotomy state. Removal of a 7.5 mm wedge improved DF by 8 deg to a mean 102.93 ± 13.81 deg (p = 0.08). Removal of a 15 mm wedge improved DF by 16 deg to a mean 95.96 ± 11.41 deg (p = 0.003). Cohen's d and effect size calculation demonstrated a 7.5 mm wedge to have a small effect on DF, while a 15 mm wedge had a medium effect (0.29, 0.52 respectively). Maximal PF did not change significantly amongst the pre-osteotomy, 7.5 mm wedge, or 15 mm wedge positions. ICC was 0.96. CONCLUSION: Based on the results presented in this study, removal of a 15 mm wedge with ZO yields significant and greater improvement in ROM than a 7.5 mm wedge. We hope the current study will better inform preoperative planning for ZO. STUDY TYPE: Prospective Cadaver Study. LEVEL OF EVIDENCE: V.

5.
Foot Ankle Orthop ; 9(2): 24730114241241320, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38617581

RESUMEN

Background: Percutaneous Zadek osteotomy (ZO) has emerged as a surgical treatment of insertional Achilles tendinopathy (IAT) over the last decade. Existing literature is limited regarding the comparison of this approach with the more established, open ZO technique. This systematic review aims to evaluate and compare the current data on open vs percutaneous ZO approaches to help set evidence-based guidelines. Methods: A systematic literature search was performed using the keywords (Zadek osteotomy) OR (Keck and Kelly osteotomy) OR (dorsal closing wedge calcaneal osteotomy) OR (Haglund Deformity) OR (Haglund Syndrome) OR (Insertional Achilles Tendinopathy) and MeSH terms Osteotomy, Calcaneus, Syndrome, Insertional, Achilles tendon, and Tendinopathy. Our search included the following databases: PubMed, Embase, and the Cochrane Library. The PRISMA protocol and the Cochrane Handbook guidelines were followed. All studies included were published from 2009 to 2024 and included the use of open or percutaneous approaches of ZO for the treatment of IAT with at least a 12-month follow-up. The MINORS score criteria were used to evaluate the strength and quality of studies. Results: A total of 17 studies were reviewed, including 611 subjects and 625 ZO procedures. Of these procedures, 81 (11%) subjects had a percutaneous and 544 (89%) subjects had an open ZO. The mean follow-up time was 16.1 months for patients treated with percutaneous ZO and 36.1 months for patients treated with open ZO. Both open and percutaneous studies included in this review showed postoperative improvements in AOFAS, FFI, VISA-A, and VAS scores in patients with IAT. The reported complication rate was 5.8% among patients treated with percutaneous ZO and 10.2% among patients treated with open ZO. Conclusion: Percutaneous ZO is an emerging approach with substantially fewer documented cases compared with the open ZO. Both percutaneous and open ZO appear to be relatively effective treatments for insertional Achilles tendinopathy with Haglund's deformity. The lower complication rates reported for percutaneous ZO is encouraging. Further investigation with more subjects undergoing percutaneous ZO is clearly needed.

6.
Eur Radiol ; 34(3): 1692-1703, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37658887

RESUMEN

OBJECTIVES: 2D real-time (RT) phase-contrast (PC) MRI is a promising alternative to conventional PC MRI, which overcomes problems due to irregular heartbeats or poor respiratory control. This study aims to evaluate a prototype compressed sensing (CS)-accelerated 2D RT-PC MRI technique with shared velocity encoding (SVE) for accurate beat-to-beat flow measurements. METHODS: The CS RT-PC technique was implemented using a single-shot fast RF-spoiled gradient echo with SVE by symmetric velocity encoding, and acquired with a temporal resolution of 51-56.5 ms in 1-5 heartbeats. Both aortic dissection phantom (n = 8) and volunteer (n = 7) studies were conducted using the prototype CS RT (CS, R = 8), the conventional (GRAPPA, R = 2), and the fully sampled PC sequences on a 3T clinical system. Flow parameters including peak velocity, peak flow rate, net flow rate, and maximum velocity were calculated to compare the performance between different methods using linear regression, intraclass correlation (ICC), and Bland-Altman analyses. RESULTS: Comparisons of the flow measurements at all locations in the phantoms demonstrated an excellent correlation (all R2 ≥ 0.93) and agreement (all ICC ≥ 0.97) with negligible means of differences. In healthy volunteers, a similarly good correlation (all R2 ≥ 0.80) and agreement (all ICC ≥ 0.90) were observed; however, CS RT slightly underestimated the maximum velocities and flow rates (~ 12%). CONCLUSION: The highly accelerated CS RT-PC technique is feasible for the evaluation of flow patterns without requiring breath-holding, and it allows for rapid flow assessment in patients with arrhythmia or poor breath-hold capacity. CLINICAL RELEVANCE STATEMENT: The free-breathing real-time flow MRI technique offers improved spatial and temporal resolutions, as well as the ability to image individual cardiac cycles, resulting in superior image quality compared to the conventional PC technique when imaging patients with arrhythmias, especially those with atrial fibrillation. KEY POINTS: • The highly accelerated prototype CS RT-PC MRI technique with improved temporal resolution by the concept of SVE is feasible for beat-to-beat flow evaluation without requiring breath-holding. • The results of the phantom and in vivo quantitative flow evaluation show the ability of the prototype CS RT-PC technique to obtain reliable flow measurements similarly to the conventional PC MRI. • With less than 12% underestimation, excellent agreements between the two techniques were shown for the measurements of peak velocities and flow rates.


Asunto(s)
Fibrilación Atrial , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Velocidad del Flujo Sanguíneo , Reproducibilidad de los Resultados
7.
JVS Vasc Sci ; 4: 100124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920479

RESUMEN

Objective: The objective of this investigation was to demonstrate that in vivo induction of hypertension (HTN) and in vitro cyclic stretch of aortic vascular smooth muscle cells (VSMCs) can cause serum and glucocorticoid-inducible kinase (SGK-1)-dependent production of cytokines to promote macrophage accumulation that may promote vascular pathology. Methods: HTN was induced in C57Bl/6 mice with angiotensin II infusion (1.46 mg/kg/day × 21 days) with or without systemic infusion of EMD638683 (2.5 mg/kg/day × 21 days), a selective SGK-1 inhibitor. Systolic blood pressure was recorded. Abdominal aortas were harvested to quantify SGK-1 activity (pSGK-1/SGK-1) by immunoblot. Flow cytometry quantified the abundance of CD11b+/F480+ cells (macrophages). Plasma interleukin (IL)-6 and monocyte chemoattractant protein-1 (MCP-1) was assessed by enzyme-linked immunosorbent assay. Aortic VSMCs from wild-type mice were subjected to 12% biaxial cyclic stretch (Stretch) for 3 or 12 hours with or without EMD638683 (10 µM) and with or without SGK-1 small interfering RNA with subsequent quantitative polymerase chain reaction for IL-6 and MCP-1 expression. IL-6 and MCP-1 in culture media were analyzed by enzyme-linked immunosorbent assay. Aortic VSMCs from SGK-1flox+/+ mice were transfected with Cre-Adenovirus to knockdown SGK-1 (SGK-1KD VSMCs) and underwent parallel tension experimentation. Computational modeling was used to simulate VSMC signaling. Statistical analysis included analysis of variance with significance at a P value of <.05. Results: SGK-1 activity, abundance of CD11b+/F4-80+ cells, and plasma IL-6 were increased in the abdominal aorta of mice with HTN and significantly reduced by treatment with EMD638683. This outcome mirrored the increased abundance of IL-6 in media from Stretch C57Bl/6 VSMCs and attenuation of the effect with EMD638683 or SGK-1 small interfering RNA. C57Bl/6 VSMCs also responded to Stretch with increased MCP-1 expression and secretion into the culture media. Further supporting the integral role of mechanical signaling through SGK-1, target gene expression and cytokine secretion was unchanged in SGK-1KD VSMCs with Stretch, and computer modeling confirmed SGK-1 as an intersecting node of signaling owing to mechanical strain and angiotensin II. Conclusions: Mechanical activation of SGK-1 in aortic VSMCs can promote inflammatory signaling and increased macrophage abundance, therefore this kinase warrants further exploration as a pharmacotherapeutic target to abrogate hypertensive vascular pathology.

9.
Vasc Endovascular Surg ; 57(5): 433-444, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36639147

RESUMEN

INTRODUCTION: Elevated interleukin-6 (IL-6) plasma levels have been associated with abdominal aortic aneurysm (AAA), but whether this cytokine plays a causative role in the degenerative remodeling or represents an effect from the inflammatory cascades initiated by infiltrating leukocytes remained unclear. This project aims to demonstrate that within the aortic wall, signaling from IL-6 through the STAT3 transcription factor is necessary for infiltration of proteolytically-active macrophages and development of small AAA. METHODS: Following measurement of baseline infrarenal aortic diameter (AoD, digital microscopy), C57Bl/6 and IL-6 knockout (IL-6KO) mice underwent AAA induction by application of peri-adventitial CaCl2 (0.5 M) +/- implantation of an osmotic mini-pump delivering IL-6 (4.36 µg/kg/day over 21 days). At the terminal procedure, AoDs were measured by digital microscopy and aortas harvested for immunoblot (pSTAT3/STAT3), matrix metalloproteinase (MMP) quantification, or flow cytometric analysis of macrophage content. Plasma was collected for cytokine analysis. RESULTS: IL-6 infusion significantly increased the plasma IL-6 levels in C57Bl/6 and IL-6KO animals. The C57Bl/6 + CaCl2 group developed AAA (AoD >50% above baseline) but IL-6KO + CaCl2 did not. In the IL-6KO + IL-6+CaCl2 group, AAA developed to match that of C57Bl/6 + CaCl2 mice. STAT3 activity was significantly increased in animals with advanced stages of dilation (>40% from baseline), compared to those with ectasia (≤25%). Although cytokine profiles did not support T-cells or neutrophils as being active contributors in this stage of aortic remodeling, changes in the profile of elaborated MMPs suggested macrophage activity with a trend toward alternatively activated pathways. Flow cytometry confirmed significantly increased macrophage abundance specifically in animals with upregulated STAT3 activity and advanced aortic dilation. CONCLUSION: In this murine model of AAA, progressive dilation to development of true AAA was only accomplished when IL-6 signaling upregulated STAT3 activity to effect accumulation of proteolytically-active macrophages. This pathway warrants further investigation to identify potential therapeutic avenues to abrogate growth of small AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Interleucina-6 , Ratones , Animales , Interleucina-6/metabolismo , Cloruro de Calcio/metabolismo , Factor de Transcripción STAT3/metabolismo , Resultado del Tratamiento , Aneurisma de la Aorta Abdominal/inducido químicamente , Aorta Abdominal/cirugía , Macrófagos/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad
10.
JVS Vasc Sci ; 2: 194-206, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34761239

RESUMEN

OBJECTIVE: The angiotensin II type 1 receptor (AT1R) can be activated under conditions of mechanical stretch in some cellular systems. Whether this activity influences signaling within the abdominal aorta to promote to abdominal aortic aneurysm (AAA) development remains unknown. We evaluated the hypothesis that mechanical AT1R activation can occur under conditions of hypertension (HTN) and contribute to AAA formation. METHODS: BPH/2 mice, which demonstrate spontaneous neurogenic, low-renin HTN, and normotensive BPN/3 mice underwent AAA induction via the calcium chloride model, with or without an osmotic minipump delivering 30 mg/kg/d of the AT1R blocker Losartan. Systolic blood pressure (SBP) was measured at baseline and weekly via a tail cuff. The aortic diameter (AoD) was measured at baseline and terminal surgery at 21 days by digital microscopy. Aortic tissue was harvested for immunoblotting (phosphorylated extracellular signal-regulated kinase-1 and -2 [pERK1/2] to ERK1/2 ratio) and expressed as the fold-change from the BPN/3 control mice. Aortic vascular smooth muscle cells (VSMCs) underwent stretch with or without Losartan (1 µM) treatment to assess the mechanical stimulation of ERK1/2 activity. Statistical analysis of the blood pressure, AoD, and VSMC ERK1/2 activity was performed using analysis of variance. However, the data distribution was determined to be log-normal (Shapiro-Wilk test) for ERK1/2 activity. Therefore, it was logarithmically transformed before analysis of variance. RESULTS: At baseline, the SBP was elevated in the BPH/2 mice relative to the BPN/3 mice (P < .05). Losartan treatment significantly reduced the SBP in both mouse strains (P < .05). AAA induction did not affect the SBP. At 21 days after induction, the percentage of increase in the AoD from baseline was significantly greater in the BPH/2 mice than in the BPN/3 mice (101.28% ± 4.19% vs 75.59% ± 1.67% above baseline; P < .05). Losartan treatment significantly attenuated AAA growth in both BPH/2 and BPN/3 mice (33.88% ± 2.97% and 43.96% ± 3.05% above baseline, respectively; P < .05). ERK1/2 activity was increased approximately fivefold in the BPH/2 control mice relative to the BPN/3 control mice (P < .05). In the BPH/2 and BPN/3 mice with AAA, ERK1/2 activity was significantly increased relative to the respective baseline control (P < .05) and effectively reduced by concomitant Losartan therapy (P < .05). Biaxial stretch of the VSMCs in the absence of angiotensin II demonstrated increased ERK1/2 activation (P < .05 vs static control), which was significantly inhibited by Losartan. CONCLUSIONS: In BPH/2 mice with spontaneous neurogenic, low-renin HTN, AAA growth was amplified compared with the normotensive control and was effectively attenuated using Losartan. ERK1/2 activity was significantly elevated in the BPH/2 mice and after AAA induction in the normotensive and hypertensive mice but was attenuated by Losartan treatment. These data suggest that AT1R activation contributes to AAA development. Therefore, further investigation into this signaling pathway could establish targets for pharmacotherapeutic engineering to slow AAA growth. (JVS-Vascular Science 2021;2:194-206.). CLINICAL RELEVANCE: Hypertension (HTN) and abdominal aortic aneurysm (AAA) have been epidemiologically linked for decades; however, a biomechanical link has not yet been identified. Using a murine model of spontaneous neurogenic HTN experimentally demonstrated to have low circulating renin, mechanical activation of the angiotensin II type 1 receptor (AT1R) was identified with elevated blood pressure and AAA induction. HTN amplified AAA growth. However, more importantly, blocking the activation of AT1R with the angiotensin receptor blocker Losartan effectively abrogated AAA development. Although inhibiting the production of angiotensin II has previously been unsuccessful in altering AAA growth, the results from the present study suggest that blocking the activation of AT1R through direct ligand binding or mechanical stimulation might alter aortic wall signaling and warrants further investigation.

11.
J Transl Med ; 16(1): 321, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463618

RESUMEN

BACKGROUND: Bone is a highly vascularized and resilient organ with innate healing abilities, however some bone injuries overwhelm these attributes and require intervention, such as bone tissue engineering strategies. Combining biomaterials and growth factors, such as bone morphogenetic protein 2 (BMP2), is one of the most commonly used tissue engineering strategies. However, use of BMP2 has been correlated with negative clinical outcomes including aberrant inflammatory response, poor quality bone, and ectopic bone. METHODS: In the present study, a novel poly-n-acetyl glucosamine (pGlcNAc, trade name Talymed) scaffold was utilized in addition to the commonly used acellular collagen sponge (ACS) BMP2 delivery system in a murine calvarial defect model to investigate whether the innate properties of Talymed can reduce the noted negative bone phenotypes associated with BMP2 treatment. RESULTS: Comparison of murine calvarial defect healing between ACS with and without Talymed revealed that there was no measurable healing benefit for the combined treatment. Healing was most effective utilizing the traditional acellular collagen sponge with a reduced dose of BMP2. CONCLUSIONS: The results of this investigation lead to the conclusion that excessive dosing of BMP2 may be responsible for the negative clinical side effects observed with this bone tissue engineering strategy. Rather than augmenting the currently used ACS BMP2 bone wound healing strategy with an additional anti-inflammatory scaffold, reducing the dose of BMP2 used in the traditional delivery system results in optimal healing without the published negative side effects of BMP2 treatment.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Colágeno/farmacología , Nanofibras/química , Cráneo/patología , Andamios del Tejido/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Cráneo/diagnóstico por imagen , Cráneo/efectos de los fármacos , Microtomografía por Rayos X
12.
Wound Repair Regen ; 26(5): 359-365, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30054956

RESUMEN

Large craniofacial defects present a substantial clinical challenge that often requires the use of osteoconductive matrices and osteoinductive cues (i.e., bone morphogenetic proteins [BMP2]) to augment healing. While these methods have improved clinical outcomes, a better understanding of how the osteogenic fronts surrounding the defect, the underlying dura mater, and the cranial suture area contribute to healing may lead to more targeted therapies to enhance bone regeneration. We hypothesized that healing within a large bone defect will be precipitated from cells within the remaining or available suture mesenchyme abutting the edges of a murine critical sized defect. To investigate this hypothesis, 39 adult, wild-type mice were randomly arranged into groups (9 or 10 per group) by time (4 and 8 weeks) and treatment (control, acellular collagen sponge alone, or acellular collagen sponge loaded with a clinically relevant scaled dosage of BMP2). The skulls were then subjected to microcomputed tomography and histological analysis to assess bone regeneration in regions of interest within the defect area. A regional assessment of healing indicated that BMP2 drives greater healing than control and that healing emanates from the surgical margin, particularly from the margin associated with undisrupted suture mesenchyme. Though BMP2 treatment drove an increase in cell presence within the healing defect, there was no regional orientation of craniofacial stem cells or vascularity. Overall, these data reinforce that osteoconductive matrices in conjunction with osteoinductive peptides result in better healing of large calvarial defects. This healing is characterized as emanating from the surgical margin where there is an abundant supply of vasculature and progenitor cells.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Regeneración Ósea/efectos de los fármacos , Colágeno/farmacología , Fracturas Óseas/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Cráneo/anomalías , Cráneo/citología , Cicatrización de Heridas/fisiología , Implantes Absorbibles , Animales , Modelos Animales de Enfermedad , Portadores de Fármacos , Fracturas Óseas/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Cráneo/lesiones , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...