Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Malar J ; 23(1): 139, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720288

RESUMEN

BACKGROUND: In 2021 and 2023, the World Health Organization approved RTS,S/AS01 and R21/Matrix M malaria vaccines, respectively, for routine immunization of children in African countries with moderate to high transmission. These vaccines are made of Plasmodium falciparum circumsporozoite protein (PfCSP), but polymorphisms in the gene raise concerns regarding strain-specific responses and the long-term efficacy of these vaccines. This study assessed the Pfcsp genetic diversity, population structure and signatures of selection among parasites from areas of different malaria transmission intensities in Mainland Tanzania, to generate baseline data before the introduction of the malaria vaccines in the country. METHODS: The analysis involved 589 whole genome sequences generated by and as part of the MalariaGEN Community Project. The samples were collected between 2013 and January 2015 from five regions of Mainland Tanzania: Morogoro and Tanga (Muheza) (moderate transmission areas), and Kagera (Muleba), Lindi (Nachingwea), and Kigoma (Ujiji) (high transmission areas). Wright's inbreeding coefficient (Fws), Wright's fixation index (FST), principal component analysis, nucleotide diversity, and Tajima's D were used to assess within-host parasite diversity, population structure and natural selection. RESULTS: Based on Fws (< 0.95), there was high polyclonality (ranging from 69.23% in Nachingwea to 56.9% in Muheza). No population structure was detected in the Pfcsp gene in the five regions (mean FST = 0.0068). The average nucleotide diversity (π), nucleotide differentiation (K) and haplotype diversity (Hd) in the five regions were 4.19, 0.973 and 0.0035, respectively. The C-terminal region of Pfcsp showed high nucleotide diversity at Th2R and Th3R regions. Positive values for the Tajima's D were observed in the Th2R and Th3R regions consistent with balancing selection. The Pfcsp C-terminal sequences revealed 50 different haplotypes (H_1 to H_50), with only 2% of sequences matching the 3D7 strain haplotype (H_50). Conversely, with the NF54 strain, the Pfcsp C-terminal sequences revealed 49 different haplotypes (H_1 to H_49), with only 0.4% of the sequences matching the NF54 strain (Hap_49). CONCLUSIONS: The findings demonstrate high diversity of the Pfcsp gene with limited population differentiation. The Pfcsp gene showed positive Tajima's D values, consistent with balancing selection for variants within Th2R and Th3R regions. The study observed differences between the intended haplotypes incorporated into the design of RTS,S and R21 vaccines and those present in natural parasite populations. Therefore, additional research is warranted, incorporating other regions and more recent data to comprehensively assess trends in genetic diversity within this important gene. Such insights will inform the choice of alleles to be included in the future vaccines.


Asunto(s)
Plasmodium falciparum , Polimorfismo Genético , Proteínas Protozoarias , Selección Genética , Humanos , Enfermedades Endémicas , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Tanzanía
2.
J Med Entomol ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733173

RESUMEN

Anopheles coluzzii (Coetzee & Wilkerson) and its sibling species Anopheles gambiae s.s. (Giles) are highly anthropophilic and among the major malaria vectors in sub-Saharan Africa. Mosquitoes use various senses to find hosts, but rely primarily on olfaction. Therefore, the mosquito olfactory system has been studied extensively, including a variety of studies comparing chemosensory gene expression between An. coluzzii and its zoophilic sibling species Anopheles quadriannulatus (Theobald). These studies revealed species-specific chemosensory gene expression in the antennae and maxillary palps, which raised the question of a potential role for the palps in determining species-specific host preferences. To answer this question, we mechanically ablated the antennae, maxillary palps, and labella, and ran both control and ablated mosquitoes through a dual-port olfactometer. While we aimed to identify the organs responsible for vertebrate host choice, the ablated mosquitoes exclusively responded to human odor, so we were unable to do so. However, we were able to refine our understanding of the roles of these organs in host-seeking activation (leaving the release cage) as well as odor response (entering an odor port). As expected, the antennae are the most important organs to both behaviors: activation was roughly halved and vertebrate odor response was abolished in antennae-ablated mosquitoes. Maxillary palp ablation had little impact on activation, but reduced odor response to a similar degree as the exclusion of CO2. Finally, while labellar ablation dramatically reduced activation (probably associated with the inability to feed), it had little impact on odor response, suggesting that any labellar role in host choice is likely not olfactory.

3.
Sci Rep ; 14(1): 8158, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589477

RESUMEN

Plasmodium falciparum with the histidine rich protein 2 gene (pfhrp2) deleted from its genome can escape diagnosis by HRP2-based rapid diagnostic tests (HRP2-RDTs). The World Health Organization (WHO) recommends switching to a non-HRP2 RDT for P. falciparum clinical case diagnosis when pfhrp2 deletion prevalence causes ≥ 5% of RDTs to return false negative results. Tanzania is a country of heterogenous P. falciparum transmission, with some regions approaching elimination and others at varying levels of control. In concordance with the current recommended WHO pfhrp2 deletion surveillance strategy, 100 health facilities encompassing 10 regions of Tanzania enrolled malaria-suspected patients between February and July 2021. Of 7863 persons of all ages enrolled and providing RDT result and blood sample, 3777 (48.0%) were positive by the national RDT testing for Plasmodium lactate dehydrogenase (pLDH) and/or HRP2. A second RDT testing specifically for the P. falciparum LDH (Pf-pLDH) antigen found 95 persons (2.5% of all RDT positives) were positive, though negative by the national RDT for HRP2, and were selected for pfhrp2 and pfhrp3 (pfhrp2/3) genotyping. Multiplex antigen detection by laboratory bead assay found 135/7847 (1.7%) of all blood samples positive for Plasmodium antigens but very low or no HRP2, and these were selected for genotyping as well. Of the samples selected for genotyping based on RDT or laboratory multiplex result, 158 were P. falciparum DNA positive, and 140 had sufficient DNA to be genotyped for pfhrp2/3. Most of these (125/140) were found to be pfhrp2+/pfhrp3+, with smaller numbers deleted for only pfhrp2 (n = 9) or only pfhrp3 (n = 6). No dual pfhrp2/3 deleted parasites were observed. This survey found that parasites with these gene deletions are rare in Tanzania, and estimated that 0.24% (95% confidence interval: 0.08% to 0.39%) of false-negative HRP2-RDTs for symptomatic persons were due to pfhrp2 deletions in this 2021 Tanzania survey. These data provide evidence for HRP2-based diagnostics as currently accurate for P. falciparum diagnosis in Tanzania.


Asunto(s)
Antígenos de Grupos Sanguíneos , Malaria Falciparum , Humanos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Eliminación de Gen , Tanzanía/epidemiología , Pruebas Diagnósticas de Rutina/métodos , Antígenos de Protozoos/genética , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Malaria Falciparum/genética , Instituciones de Salud , ADN
4.
Am J Trop Med Hyg ; 110(5): 887-891, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38507797

RESUMEN

As part of malaria nationwide monitoring and evaluation initiatives, there is an increasing trend of incorporating malaria rapid diagnostic tests (mRDTs) in surveys conducted within primary schools to detect malaria parasites. However, mRDTs based on the detection of histidine-rich protein 2 (HRP2) are known to yield false-positive results due to persistent antigenemia, and false-negative results may result from low parasitemia or Plasmodium falciparum hrp2/3 gene deletion. We evaluated diagnostic performance of an HRP2 and pan-parasite lactate dehydrogenase (HRP2/pLDH) mRDT against polymerase chain reaction (PCR) for detection of P. falciparum among 17,051 primary school-age children from eight regions of Tanzania in 2017. According to PCR, the prevalence of P. falciparum was 19.2% (95% CI: 18.6-19.8). Using PCR as reference, the sensitivity and specificity of mRDT was 76.2% (95% CI: 74.7-77.7) and 93.9% (95% CI: 93.5-94.3), respectively. Test agreement was lowest in low transmission areas, where true-positive mRDTs were outnumbered by false-negatives due to low parasitemia. Discordant samples (mRDT-negative but PCR-positive) were screened for pfhrp2/3 deletion by real-time PCR. Among those with a parasite density sufficient for analysis, pfhrp2 deletion was confirmed in 60 samples, whereas pfhrp3 deletion was confirmed in two samples; one sample had both pfhrp2 and pfhrp3 deletions. The majority of samples with gene deletions were detected in the high-transmission Kagera region. Compared with mRDTs, PCR and other molecular methods offer increased sensitivity and are not affected by pfhrp2/3 deletions, making them a useful supplement to mRDTs in schools and other epidemiological surveys.


Asunto(s)
Antígenos de Protozoos , Pruebas Diagnósticas de Rutina , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Sensibilidad y Especificidad , Tanzanía/epidemiología , Humanos , Antígenos de Protozoos/genética , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Proteínas Protozoarias/genética , Niño , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Pruebas Diagnósticas de Rutina/métodos , Eliminación de Gen , Femenino , Masculino , Instituciones Académicas , Reacción en Cadena de la Polimerasa/métodos , Prevalencia , Prueba de Diagnóstico Rápido
5.
Parasit Vectors ; 17(1): 153, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38519992

RESUMEN

BACKGROUND: Recent studies point to the need to incorporate the detection of non-falciparum species into malaria surveillance activities in sub-Saharan Africa, where 95% of the world's malaria cases occur. Although malaria caused by infection with Plasmodium falciparum is typically more severe than malaria caused by the non-falciparum Plasmodium species P. malariae, P. ovale spp. and P. vivax, the latter may be more challenging to diagnose, treat, control and ultimately eliminate. The prevalence of non-falciparum species throughout sub-Saharan Africa is poorly defined. Tanzania has geographical heterogeneity in transmission levels but an overall high malaria burden. METHODS: To estimate the prevalence of malaria species in Mainland Tanzania, we randomly selected 1428 samples from 6005 asymptomatic isolates collected in previous cross-sectional community surveys across four regions and analyzed these by quantitative PCR to detect and identify the Plasmodium species. RESULTS: Plasmodium falciparum was the most prevalent species in all samples, with P. malariae and P. ovale spp. detected at a lower prevalence (< 5%) in all four regions; P. vivax was not detected in any sample. CONCLUSIONS: The results of this study indicate that malaria elimination efforts in Tanzania will need to account for and enhance surveillance of these non-falciparum species.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Infecciones Asintomáticas/epidemiología , Estudios Transversales , Malaria/epidemiología , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Plasmodium falciparum , Plasmodium malariae , Prevalencia , Tanzanía/epidemiología
6.
medRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38343796

RESUMEN

Background: In 2021 and 2023, the World Health Organization approved RTS, S/AS01 and R21/Matrix M malaria vaccines, respectively, for routine immunization of children in African countries with moderate to high transmission. These vaccines are made of Plasmodium falciparum circumsporozoite protein (Pfcsp) but polymorphisms in this gene raises concerns regarding strain-specific responses and the long-term efficacy of these vaccines. This study assessed the Pfcsp genetic diversity, population structure and signatures of selection among parasites from areas of different malaria transmission in mainland Tanzania, to generate baseline data before the introduction of the malaria vaccines in the country. Methods: The analysis involved 589 whole genome sequences generated by and as part of the MalariaGEN Community Project. The samples were collected between 2013 and January 2015 from five regions of mainland Tanzania: Morogoro and Tanga (Muheza) (moderate transmission areas), and Kagera (Muleba), Lindi (Nachingwea), and Kigoma (Ujiji) (high transmission areas). Wright's inbreeding coefficient (Fws), Wright's fixation index (FST), principal component analysis, nucleotide diversity, and Tajima's D were used to assess within-host parasite diversity, population structure and natural selection. Results: Based on Fws (< 0.95), there was high polyclonality (ranged from 69.23% in Nachingwea to 56.9% in Muheza). No population structure was detected in the Pfcsp gene in the five regions (mean FST= 0.0068). The average nucleotide diversity (π), nucleotide differentiation (K) and haplotype diversity (Hd) in the five regions were 4.19, 0.973 and 0.0035, respectively. The C-terminal region of Pfcsp showed high nucleotide diversity at Th2R and Th3R regions. Positive values for the Tajima's D were observed in the Th2R and Th3R regions consistent with balancing selection. The Pfcsp C-terminal sequences had 50 different haplotypes (H_1 to H_50) and only 2% of sequences matched the 3D7 strain haplotype (H_50). Conclusions: The findings demonstrate high diversity of the Pfcsp gene with limited population differentiation. The Pfcsp gene showed positive Tajima's D values for parasite populations, consistent with balancing selection for variants within Th2R and Th3R regions. This data is consistent with other studies conducted across Africa and worldwide, which demonstrate low 3D7 haplotypes and little population structure. Therefore, additional research is warranted, incorporating other regions and more recent data to comprehensively assess trends in genetic diversity within this important gene. Such insights will inform the choice of alleles to be included in the future vaccines.

7.
medRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36865135

RESUMEN

The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania, and continued local transmission. To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo District on the coastal mainland from 2016-2018. Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes. Our data support importation as a main source of genetic diversity and contribution to the parasite population on Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive for malaria reemergence due to susceptible hosts and competent vectors.

8.
J Infect Dis ; 229(4): 959-968, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37992117

RESUMEN

BACKGROUND: Recent data indicate that non-Plasmodium falciparum species may be more prevalent than thought in sub-Saharan Africa. Although Plasmodium malariae, Plasmodium ovale spp., and Plasmodium vivax are less severe than P. falciparum, treatment and control are more challenging, and their geographic distributions are not well characterized. METHODS: We randomly selected 3284 of 12 845 samples collected from cross-sectional surveys in 100 health facilities across 10 regions of Mainland Tanzania and performed quantitative real-time PCR to determine presence and parasitemia of each malaria species. RESULTS: P. falciparum was most prevalent, but P. malariae and P. ovale were found in all but 1 region, with high levels (>5%) of P. ovale in 7 regions. The highest P. malariae positivity rate was 4.5% in Mara and 8 regions had positivity rates ≥1%. We only detected 3 P. vivax infections, all in Kilimanjaro. While most nonfalciparum malaria-positive samples were coinfected with P. falciparum, 23.6% (n = 13 of 55) of P. malariae and 14.7% (n = 24 of 163) of P. ovale spp. were monoinfections. CONCLUSIONS: P. falciparum remains by far the largest threat, but our data indicate that malaria elimination efforts in Tanzania will require increased surveillance and improved understanding of the biology of nonfalciparum species.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Tanzanía/epidemiología , Estudios Transversales , Malaria/epidemiología , Malaria Falciparum/epidemiología , Plasmodium malariae/genética
9.
medRxiv ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37986920

RESUMEN

Background: Emergence of artemisinin partial resistance (ART-R) in Plasmodium falciparum is a growing threat to the efficacy of artemisinin combination therapies (ACT) and the efforts for malaria elimination. The emergence of Plasmodium falciparum Kelch13 (K13) R561H in Rwanda raised concern about the impact in neighboring Tanzania. In addition, regional concern over resistance affecting sulfadoxine-pyrimethamine (SP), which is used for chemoprevention strategies, is high. Methods: To enhance longitudinal monitoring, the Molecular Surveillance of Malaria in Tanzania (MSMT) project was launched in 2020 with the goal of assessing and mapping antimalarial resistance. Community and clinic samples were assessed for resistance polymorphisms using a molecular inversion probe platform. Findings: Genotyping of 6,278 samples collected countrywide in 2021 revealed a focus of K13 561H mutants in northwestern Tanzania (Kagera) with prevalence of 7.7% (50/649). A small number of 561H mutants (about 1%) were found as far as 800 km away in Tabora, Manyara, and Njombe. Genomic analysis suggests some of these parasites are highly related to isolates collected in Rwanda in 2015, supporting regional spread of 561H. However, a novel haplotype was also observed, likely indicating a second origin in the region. Other validated resistance polymorphisms (622I and 675V) were also identified. A focus of high sulfadoxine-pyrimethamine drug resistance was also identified in Kagera with a prevalence of dihydrofolate reductase 164L of 15% (80/526). Interpretation: These findings demonstrate the K13 561H mutation is entrenched in the region and that multiple origins of ART-R, similar as to what was seen in Southeast Asia, have occurred. Mutations associated with high levels of SP resistance are increasing. These results raise concerns about the long-term efficacy of artemisinin and chemoprevention antimalarials in the region. Funding: This study was funded by the Bill and Melinda Gates Foundation and the National Institutes of Health.

10.
J Emerg Manag ; 21(4): 275-286, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37878399

RESUMEN

At the national level, the field of emergency management has distinctive capabilities and responsibilities organized by the United States Department of Homeland Security and Federal Emergency Management Agency (FEMA) doctrine. Key to this doctrine is the goal: a secure and resilient nation. This goal is known as the National Preparedness Goal (NPG). The NPG is supported by five missions, and these five missions are supported by 32 core capabilities. One of the core capabilities is Public Information and Warning. This core capability is so important and spans all five missions. ". . . Public information is a vital function in disaster operations that contributes greatly to saving lives and protecting property." Public information officers (PIOs) are responsible for collecting, analyzing, verifying, and communicating risk, crisis, and recovery information to a wide variety of people across the "whole community." This needs analysis conducted as a component of this paper demonstrated a need for a strategic, coordinated, and unified approach to training PIOs in the NPG. A review of employee training literature, along with the conclusions from the needs analysis and the central role the NPG plays in FEMA doctrine, revealed the value of integrating the NPG into PIO training. The purpose of this paper was to determine to what extent the NPG identifies training procedures to empower PIOs to fulfill their communication responsibilities within the NPG and to determine if current PIO training is preparing PIOs to support their NPG responsibilities. Content analysis methodology was used to determine to what extent training was described within the NPG. Cross-tabulation (Crosstab) methodology was utilized to determine coincidence between existing PIO training course learning objectives (CLOs) and the NPG. This paper may serve as a framework for aligning PIO training with the NPG. Furthermore, once completed, this paper may serve as tool to evaluate PIO training, communication planning, and post-incident after-action reports. Content analysis of the NPG revealed no description of training recommendations or training regimen for PIOs and/or emergency managers to fulfill their NPG responsibilities. Crosstab methodological data analysis revealed a 53 percent coincidence between the NPG and the PIO CLOs. The NPG is FEMA's standard for national emergency preparedness. Communication, and thus PIOs, plays a significant part in fulfilling this standard. The more PIOs can be trained in achieving the NPG communication mission, the more resilient the whole community will be when there are crises.


Asunto(s)
Defensa Civil , Planificación en Desastres , Desastres , Humanos , Estados Unidos , Objetivos , Agencias Gubernamentales
11.
medRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37790396

RESUMEN

Recent data indicate that non- Plasmodium falciparum species may be more prevalent than previously realized in sub-Saharan Africa, the region where 95% of the world's malaria cases occur. Although Plasmodium malariae, Plasmodium ovale spp., and Plasmodium vivax are generally less severe than P. falciparum , treatment and control are more challenging, and their geographic distributions are not well characterized. In order to characterize the distribution of malaria species in Mainland Tanzania (which has a high burden and geographically heterogeneous transmission levels), we randomly selected 3,284 samples from 12,845 samples to determine presence and parasitemia of different malaria species. The samples were collected from cross-sectional surveys in 100 health facilities across ten regions and analyzed via quantitative real-time PCR to characterize regional positivity rates for each species. P. falciparum was most prevalent, but P. malariae and P. ovale were found in all regions except Dar es Salaam, with high levels (>5%) of P. ovale in seven regions (70%). The highest positivity rate of P. malariae was 4.5% in Mara region and eight regions (80%) had positivity rates ≥1%. We also detected three P. vivax infections in the very low-transmission Kilimanjaro region. While most samples that tested positive for non-falciparum malaria were co-infected with P. falciparum , 23.6% (n = 13/55) of P. malariae and 14.7% (n = 24/163) of P. ovale spp. samples were mono-infections. P. falciparum remains by far the largest threat, but our data indicate that malaria elimination efforts in Tanzania will require increased surveillance and improved understanding of the biology of non-falciparum species.

12.
BMJ Case Rep ; 16(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699741

RESUMEN

COVID-19 infection and hereditary haemochromatosis (HH) have something in common; the disease course can be monitored with ferritin levels. Throughout the pandemic, physicians have looked for markers to help predict disease severity. Ferritin levels are commonly used to predict and monitor disease severity in hospitalised patients with COVID-19. While ferritin is elevated as part of the acute-phase reaction in response to infection, it can also be elevated due to iron overload. We report a case of undiagnosed, asymptomatic HH that was unveiled after COVID-19 infection via monitoring for resolution of ferritin levels that were found to be extremely elevated during a moderate COVID-19 infection. This diagnosis allowed the patient to initiate phlebotomy treatment before symptoms of HH arose.


Asunto(s)
COVID-19 , Hemocromatosis , Sobrecarga de Hierro , Humanos , Hemocromatosis/complicaciones , Hemocromatosis/diagnóstico , Hemocromatosis/genética , Ferritinas , Hospitalización
13.
medRxiv ; 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38234751

RESUMEN

Recent studies point to the need to incorporate non-falciparum species detection into malaria surveillance activities in sub-Saharan Africa, where 95% of malaria cases occur. Although Plasmodium falciparum infection is typically more severe, diagnosis, treatment, and control for P. malariae, P. ovale spp., and P. vivax may be more challenging. The prevalence of these species throughout sub-Saharan Africa is poorly defined. Tanzania has geographically heterogeneous transmission levels but an overall high malaria burden. In order to estimate the prevalence of malaria species in Mainland Tanzania, 1,428 samples were randomly selected from 6,005 asymptomatic isolates collected in cross-sectional community surveys across four regions and analyzed via qPCR to detect each Plasmodium species. P. falciparum was most prevalent, with P. malariae and P. ovale spp. detected at lower prevalence (<5%) in all four regions. P. vivax was not detected. Malaria elimination efforts in Tanzania will need to account for these non-falciparum species.

14.
Front Cell Infect Microbiol ; 12: 757844, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909968

RESUMEN

Recent developments in molecular biology and genomics have revolutionized biology and medicine mainly in the developed world. The application of next generation sequencing (NGS) and CRISPR-Cas tools is now poised to support endemic countries in the detection, monitoring and control of endemic diseases and future epidemics, as well as with emerging and re-emerging pathogens. Most low and middle income countries (LMICs) with the highest burden of infectious diseases still largely lack the capacity to generate and perform bioinformatic analysis of genomic data. These countries have also not deployed tools based on CRISPR-Cas technologies. For LMICs including Tanzania, it is critical to focus not only on the process of generation and analysis of data generated using such tools, but also on the utilization of the findings for policy and decision making. Here we discuss the promise and challenges of NGS and CRISPR-Cas in the context of malaria as Africa moves towards malaria elimination. These innovative tools are urgently needed to strengthen the current diagnostic and surveillance systems. We discuss ongoing efforts to deploy these tools for malaria detection and molecular surveillance highlighting potential opportunities presented by these innovative technologies as well as challenges in adopting them. Their deployment will also offer an opportunity to broadly build in-country capacity in pathogen genomics and bioinformatics, and to effectively engage with multiple stakeholders as well as policy makers, overcoming current workforce and infrastructure challenges. Overall, these ongoing initiatives will build the malaria molecular surveillance capacity of African researchers and their institutions, and allow them to generate genomics data and perform bioinformatics analysis in-country in order to provide critical information that will be used for real-time policy and decision-making to support malaria elimination on the continent.


Asunto(s)
Enfermedades Transmisibles , Malaria , Sistemas CRISPR-Cas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Malaria/diagnóstico , Malaria/epidemiología , Malaria/prevención & control , Tanzanía
15.
Clin Infect Dis ; 74(10): 1776-1785, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-34383889

RESUMEN

BACKGROUND: Households are hot spots for severe acute respiratory syndrome coronavirus 2 transmission. METHODS: This prospective study enrolled 100 coronavirus disease 2019 (COVID-19) cases and 208 of their household members in North Carolina though October 2020, including 44% who identified as Hispanic or non-White. Households were enrolled a median of 6 days from symptom onset in the index case. Incident secondary cases within the household were detected using quantitative polymerase chain reaction of weekly nasal swabs (days 7, 14, 21) or by seroconversion at day 28. RESULTS: Excluding 73 household contacts who were PCR-positive at baseline, the secondary attack rate (SAR) among household contacts was 32% (33 of 103; 95% confidence interval [CI], 22%-44%). The majority of cases occurred by day 7, with later cases confirmed as household-acquired by viral sequencing. Infected persons in the same household had similar nasopharyngeal viral loads (intraclass correlation coefficient = 0.45; 95% CI, .23-.62). Households with secondary transmission had index cases with a median viral load that was 1.4 log10 higher than those without transmission (P = .03), as well as higher living density (more than 3 persons occupying fewer than 6 rooms; odds ratio, 3.3; 95% CI, 1.02-10.9). Minority households were more likely to experience high living density and had a higher risk of incident infection than did White households (SAR, 51% vs 19%; P = .01). CONCLUSIONS: Household crowding in the context of high-inoculum infections may amplify the spread of COVID-19, potentially contributing to disproportionate impact on communities of color.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Aglomeración , Composición Familiar , Humanos , Estudios Prospectivos , Estados Unidos , Carga Viral
16.
J Biol Chem ; 296: 100588, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33774052

RESUMEN

Excess circulating human growth hormone (hGH) in vivo is linked to metabolic and growth disorders such as cancer, diabetes, and acromegaly. Consequently, there is considerable interest in developing antagonists of hGH action. Here, we present the design, synthesis, and characterization of a 16-residue peptide (site 1-binding helix [S1H]) that inhibits hGH-mediated STAT5 phosphorylation in cultured cells. S1H was designed as a direct sequence mimetic of the site 1 mini-helix (residues 36-51) of wild-type hGH and acts by inhibiting the interaction of hGH with the human growth hormone receptor (hGHR). In vitro studies indicated that S1H is stable in human serum and can adopt an α-helix in solution. Our results also show that S1H mitigates phosphorylation of STAT5 in cells co-treated with hGH, reducing intracellular STAT5 phosphorylation levels to those observed in untreated controls. Furthermore, S1H was found to attenuate the activity of the hGHR and the human prolactin receptor, suggesting that this peptide acts as an antagonist of both lactogenic and somatotrophic hGH actions. Finally, we used alanine scanning to determine how discrete amino acids within the S1H sequence contribute to its structural organization and biological activity. We observed a strong correlation between helical propensity and inhibitory effect, indicating that S1H-mediated antagonism of the hGHR is largely dependent on the ability for S1H to adopt an α-helix. Taken together, these results show that S1H not only acts as a novel peptide-based antagonist of the hGHR but can also be applied as a chemical tool to study the molecular nature of hGH-hGHR interactions.


Asunto(s)
Péptidos/farmacología , Receptores de Somatotropina/antagonistas & inhibidores , Línea Celular , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Modelos Moleculares , Péptidos/química , Fosforilación/efectos de los fármacos , Conformación Proteica , Receptores de Somatotropina/química , Receptores de Somatotropina/metabolismo , Factor de Transcripción STAT5/metabolismo
17.
J Med Entomol ; 58(3): 1012-1020, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33576414

RESUMEN

Because of its importance as a malaria vector, Anopheles coluzzii's Coetzee & Wilkerson olfactory system has been studied extensively. Among this work is a series of studies comparing the expression of chemosensory genes in olfactory organs in females and/or males of these species. These have identified species- and female-biased chemosensory gene expression patterns. However, many questions remain about the role of chemosensation in male anopheline biology. To pave the way for future work we used RNAseq to compare chemosensory gene expression in the male maxillary palps of An. coluzzii and its sibling species An. quadriannulatus Theobald. As expected, the chemosensory gene repertoire is small in the male maxillary palps. Both species express the tuning receptors Or8 and Or28 at relatively high levels. The CO2 receptor genes Gr22-Gr24 are present in both species as well, although at much lower level than in females. Additionally, several chemoreceptors are species-specific. Gr37 and Gr52 are exclusive to An. coluzzii, whereas Or9 and Gr60 were detected only in An. quadriannulatus. Furthermore, several chemosensory genes show differential expression between the two species. Finally, several Irs, Grs, and Obps that show strong differential expression in the female palps, are absent or lowly expressed in the male palps. While many questions remain about the role of chemosensation in anopheline male biology, these results suggest that the male maxillary palps could have both a sex- and species-specific role in the perception of chemical stimuli. This work may guide future studies on the role of the male maxillary palp in these species.


Asunto(s)
Anopheles/genética , Expresión Génica , Proteínas de Insectos/genética , Animales , Anopheles/metabolismo , Células Quimiorreceptoras/metabolismo , Proteínas de Insectos/metabolismo , Masculino , Boca , Especificidad de la Especie
18.
Integr Comp Biol ; 60(4): 943-954, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32681802

RESUMEN

Nest building consists of a series of motor actions, which are concomitant with activity in regions of the anterior motor pathway, the social behavior network, and the reward circuity in nest building adult male zebra finches (Taeniopygia guttata). It is not clear, however, whether this activity is due to nest building, collection, and/or manipulation of nest material. To identify which areas of the brain are specifically involved, we used immunohistochemistry to quantify the immediate early gene c-Fos in male zebra finches that were nest building (Building), birds given a nest box but could interact only with tied down nest material (Fixed), and birds that were not given a nest box or nest material (Control). We investigated the following brain regions: the anterior motor pathway (anterior ventral mesopallium [AMV], AN, anterior striatum [ASt]), areas of the social behavior network (bed nucleus of the stria terminalis, dorsomedial subdivision [BSTmd], lateral septum [LS]), the dopaminergic reward circuitry (ventral tegmental area), and the cerebellum. We found that there was greater Fos immunoreactivity expression in the BSTmd, LS, and AMV with increased material deposition; in LS, AMV ASt, and Folium VI with increased material carrying; in LS, AMV, and ASt with increased nest material tucking; and in LS and all folia (except Folium VIII) with increased tugging at tied down material. These data confirm a functional role for areas of the anterior motor pathway, social behavior network, and the cerebellum in nest material collection and manipulation by birds.


Asunto(s)
Pinzones , Animales , Encéfalo , Masculino , Comportamiento de Nidificación , Recompensa , Conducta Social
19.
Parasit Vectors ; 13(1): 212, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32321556

RESUMEN

BACKGROUND: Olfactory cues drive mosquito behaviors such as host-seeking, locating sugar sources and oviposition. These behaviors can vary between sexes and closely related species. For example, the malaria vector Anopheles coluzzii is highly anthropophilic, whereas An. quadriannulatus is not. These behavioral differences may be reflected in chemosensory gene expression. METHODS: The expression of chemosensory genes in the antennae of both sexes of An. coluzzii and An. quadriannulatus was compared using RNA-seq. The sex-biased expression of several genes in An. coluzzii was also compared using qPCR. RESULTS: The chemosensory expression is mostly similar in the male antennae of An. coluzzii and An. quadriannulatus, with only a few modest differences in expression. A handful of chemosensory genes are male-biased in both species; the highly expressed gustatory receptor AgGr33, odorant binding proteins AgObp25, AgObp26 and possibly AgObp10. Although the chemosensory gene repertoire is mostly shared between the sexes, several highly female-biased AgOrs, AgIrs, and one AgObp were identified, including several whose expression is biased towards the anthropophilic An. coluzzii. Additionally, the expression of several chemosensory genes is biased towards An. coluzzii in both sexes. CONCLUSIONS: Chemosensory gene expression is broadly similar between species and sexes, but several sex- biased/specific genes were identified. These may modulate sex- and species-specific behaviors. Although the male behavior of these species remains poorly studied, the identification of sex- and species-specific chemosensory genes may provide fertile ground for future work.


Asunto(s)
Anopheles/genética , Antenas de Artrópodos/metabolismo , Expresión Génica , Proteínas de Insectos/genética , Mosquitos Vectores/genética , Animales , Anopheles/clasificación , Femenino , Perfilación de la Expresión Génica , Masculino , Especificidad de Órganos , RNA-Seq , Receptores Odorantes , Factores Sexuales , Olfato/genética , Especificidad de la Especie , Gusto/genética
20.
Front Neuroanat ; 14: 10, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256320

RESUMEN

Traditionally, the impact of evolution on the central nervous system has been studied by comparing the sizes of brain regions between species. However, more recent work has demonstrated that environmental factors, such as sensory experience, modulate brain region sizes intraspecifically, clouding the distinction between evolutionary and environmental sources of neuroanatomical variation in a sampled brain. Here, we review how teleost fish have played a central role in shaping this traditional understanding of brain structure evolution between species as well as the capacity for the environment to shape brain structure similarly within a species. By demonstrating that variation measured by brain region size varies similarly both inter- and intraspecifically, work on teleosts highlights the depth of the problem of studying brain evolution using neuroanatomy alone: even neurogenesis, the primary mechanism through which brain regions are thought to change size between species, also mediates experience-dependent changes within species. Here, we argue that teleost models also offer a solution to this overreliance on neuroanatomy in the study of brain evolution. With the advent of work on teleosts demonstrating interspecific evolutionary signatures in embryonic gene expression and the growing understanding of developmental neurogenesis as a multi-stepped process that may be differentially regulated between species, we argue that the tools are now in place to reframe how we compare brains between species. Future research can now transcend neuroanatomy to leverage the experimental utility of teleost fishes in order to gain deeper neurobiological insight to help us discern developmental signatures of evolutionary adaptation from phenotypic plasticity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA