Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(10): eade1463, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36897941

RESUMEN

Pathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems.


Asunto(s)
Megalencefalia , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Haploinsuficiencia , Metiltransferasas/genética , Ratones Noqueados , Trastornos del Neurodesarrollo/genética , Fenotipo
2.
Front Genet ; 13: 901228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035149

RESUMEN

Disruptive variants in lysine methyl transferase 5B (KMT5B/SUV4-20H1) have been identified as likely-pathogenic among humans with neurodevelopmental phenotypes including motor deficits (i.e., hypotonia and motor delay). However, the role that this enzyme plays in early motor development is largely unknown. Using a Kmt5b gene trap mouse model, we assessed neuromuscular strength, skeletal muscle weight (i.e., muscle mass), neuromuscular junction (NMJ) structure, and myofiber type, size, and distribution. Tests were performed over developmental time (postnatal days 17 and 44) to represent postnatal versus adult structures in slow- and fast-twitch muscle types. Prior to the onset of puberty, slow-twitch muscle weight was significantly reduced in heterozygous compared to wild-type males but not females. At the young adult stage, we identified decreased neuromuscular strength, decreased skeletal muscle weights (both slow- and fast-twitch), increased NMJ fragmentation (in slow-twitch muscle), and smaller myofibers in both sexes. We conclude that Kmt5b haploinsufficiency results in a skeletal muscle developmental deficit causing reduced muscle mass and body weight.

3.
Autism Res ; 14(8): 1554-1571, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33871180

RESUMEN

Lysine methyl transferase 5B (KMT5B) has been recently highlighted as a risk gene in genetic studies of neurodevelopmental disorders (NDDs), specifically, autism spectrum disorder (ASD) and intellectual disability (ID); yet, its role in the brain is not known. The goal of this work was to neurodevelopmentally characterize the effect(s) of KMT5B haploinsufficiency using a mouse model. A Kmt5b gene-trap mouse line was obtained from the Knockout Mouse Project. Wild type (WT) and heterozygous (HET) mice were subjected to a comprehensive neurodevelopmental test battery to assess reflexes, motor behavior, learning/memory, social behavior, repetitive movement, and common ASD comorbidities (obsessive compulsion, depression, and anxiety). Given the strong sex bias observed in the ASD patient population, we tested both a male and female cohort of animals and compared differences between genotypes and sexes. HET mice were significantly smaller than WT littermates starting at postnatal day 10 through young adulthood which was correlated with smaller brain size (i.e., microcephaly). This was more severe in males than females. HET male neonates also had delayed eye opening and significantly weaker reflexes than WT littermates. In young adults, significant differences between genotypes relative to anxiety, depression, fear, and extinction learning were observed. Interestingly, several sexually dimorphic differences were noted including increased repetitive grooming behavior in HET females and an increased latency to hot plate response in HET females versus a decreased latency in HET males. LAY SUMMARY: Lysine methyl transferase 5B (KMT5B) has been recently highlighted as a risk gene in neurodevelopmental disorders (NDDs), specifically, autism spectrum disorder (ASD) and intellectual disability (ID); yet its role in the brain is not known. Our study indicates that mice lacking one genomic copy of Kmt5b show deficits in neonatal reflexes, sociability, repetitive stress-induced grooming, changes in thermal pain sensing, decreased depression and anxiety, increased fear, slower extinction learning, and lower body weight, length, and brain size. Furthermore, several outcomes differed by sex, perhaps mirroring the sex bias in ASD.


Asunto(s)
Trastorno del Espectro Autista , Adulto , Animales , Ansiedad/genética , Trastorno del Espectro Autista/genética , Modelos Animales de Enfermedad , Miedo , Femenino , Aseo Animal , Humanos , Masculino , Ratones , Ratones Noqueados , Conducta Social , Adulto Joven
4.
Epilepsia ; 61(3): 572-588, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32030748

RESUMEN

OBJECTIVE: Immediately preceding sudden unexpected death in epilepsy (SUDEP), patients experienced a final generalized tonic-clonic seizure (GTCS), rapid ventilation, apnea, bradycardia, terminal apnea, and asystole. Whether a progressive pathophysiology develops and increases risk of SUDEP remains unknown. Here, we determined (a) heart rate, respiratory rate, and blood oxygen saturation (SaO2 ) in low-risk and high-risk knockout (KO) mice; and (b) whether blocking receptors for orexin, a cardiorespiratory neuromodulator, influences cardiorespiratory function mice or longevity in high-risk KO mice. METHODS: Heart rate and SaO2 were determined noninvasively with ECGenie and pulse oximetry. Respiration was determined with noninvasive airway mechanics technology. The role of orexin was determined within subject following acute treatment with a dual orexin receptor antagonist (DORA, 100 mg/kg). The number of orexin neurons in the lateral hypothalamus was determined with immunohistochemistry. RESULTS: Intermittent bradycardia was more prevalent in high-risk KO mice, an effect that may be the result of increased parasympathetic drive. High-risk KO mice had more orexin neurons in the lateral hypothalamus. Blocking of orexin receptors differentially influenced heart rate in KO, but not wild-type (WT) mice. When DORA administration increased heart rate, it also decreased heart rate variability, breathing frequency, and/or hypopnea-apnea. Blocking orexin receptors prevented the methacholine (MCh)-induced increase in breathing frequency in KO mice and reduced MCh-induced seizures, via a direct or indirect mechanism. DORA improved oxygen saturation in KO mice with intermittent hypoxia. Daily administration of DORA to high-risk KO mice increased longevity. SIGNIFICANCE: High-risk KO mice have a unique cardiorespiratory phenotype that is characterized by progressive changes in five interdependent endpoints. Blocking of orexin receptors attenuates some of these endpoints and increases longevity, supporting the notion that windows of opportunity for intervention exist in this preclinical SUDEP model.


Asunto(s)
Apnea/genética , Bradicardia/genética , Epilepsia/genética , Hipoxia/genética , Canal de Potasio Kv.1.1/genética , Muerte Súbita e Inesperada en la Epilepsia , Animales , Apnea/fisiopatología , Bradicardia/fisiopatología , Epilepsia/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Área Hipotalámica Lateral/metabolismo , Área Hipotalámica Lateral/patología , Hipoxia/fisiopatología , Cloruro de Metacolina/toxicidad , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Antagonistas de los Receptores de Orexina/farmacología , Orexinas/metabolismo , Oximetría , Oxígeno , Sistema Nervioso Parasimpático/fisiopatología , Parasimpaticomiméticos/toxicidad , Frecuencia Respiratoria/efectos de los fármacos , Convulsiones/inducido químicamente
5.
Epilepsia ; 59(2): 345-357, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29327348

RESUMEN

OBJECTIVE: Increased breathing rate, apnea, and respiratory failure are associated with sudden unexpected death in epilepsy (SUDEP). We recently demonstrated the progressive nature of epilepsy and mortality in Kcna1-/- mice, a model of temporal lobe epilepsy and SUDEP. Here we tested the hypothesis that respiratory dysfunction progresses with age in Kcna1-/- mice, thereby increasing risk of respiratory failure and sudden death (SD). METHODS: Respiratory parameters were determined in conscious mice at baseline and following increasing doses of methacholine (MCh) using noninvasive airway mechanics (NAM) systems. Kcna1+/+ , Kcna1+/- , and Kcna1-/- littermates were assessed during 3 age ranges when up to ~30%, ~55%, and ~90% of Kcna1-/- mice have succumbed to SUDEP: postnatal day (P) 32-36, P40-46, and P48-56, respectively. Saturated arterial O2 (SaO2 ) was determined with pulse oximetry. Lung and brain tissues were isolated and Kcna1 gene and protein expression were evaluated by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and Western blot techniques. Airway smooth muscle responsiveness was assessed in isolated trachea exposed to MCh. RESULTS: Kcna1-/- mice experienced an increase in basal respiratory drive, chronic oxygen desaturation, frequent apnea-hypopnea (A-H), an atypical breathing sequence of A-H-tachypnea-A-H, increased tidal volume, and hyperventilation induced by MCh. The MCh-provoked hyperventilation was dramatically attenuated with age. Of interest, only Kcna1-/- mice developed seizures following exposure to MCh. Seizures were provoked by lower concentrations of MCh as Kcna1-/- mice approached SD. MCh-induced seizures experienced by a subset of younger Kcna1-/- mice triggered death. Respiratory parameters of these younger Kcna1-/- mice resembled older near-SD Kcna1-/- mice. Kcna1 gene and protein were not expressed in Kcna1+/+ and Kcna1+/- lungs, and MCh-mediated airway smooth muscle contractions exhibited similar half-maximal effective concentration( EC50 ) in isolated Kcna1+/+ and Kcna1-/- trachea. SIGNIFICANCE: The Kcna1-/- model of SUDEP exhibits progressive respiratory dysfunction, which suggests a potential increased susceptibility for respiratory failure during severe seizures that may result in sudden death.


Asunto(s)
Apnea/genética , Muerte Súbita , Epilepsia del Lóbulo Temporal/fisiopatología , Hipoxia/genética , Canal de Potasio Kv.1.1/genética , Insuficiencia Respiratoria/genética , Animales , Apnea/complicaciones , Apnea/metabolismo , Broncoconstrictores/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Epilepsia , Epilepsia del Lóbulo Temporal/complicaciones , Expresión Génica , Hiperventilación/inducido químicamente , Hipoxia/complicaciones , Hipoxia/metabolismo , Canal de Potasio Kv.1.1/metabolismo , Cloruro de Metacolina/farmacología , Ratones , Ratones Noqueados , Músculo Liso/efectos de los fármacos , Insuficiencia Respiratoria/complicaciones , Insuficiencia Respiratoria/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Taquipnea/complicaciones , Taquipnea/genética , Taquipnea/metabolismo , Volumen de Ventilación Pulmonar , Tráquea/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...