Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801695

RESUMEN

Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.


Asunto(s)
Fosforilación Oxidativa , Superóxidos , Daño del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Mitocondrias/metabolismo , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
2.
Sci Adv ; 7(6)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536214

RESUMEN

Genetic assimilation-the evolutionary process by which an environmentally induced phenotype is made constitutive-represents a fundamental concept in evolutionary biology. Thought to reflect adaptive phenotypic plasticity, matricidal hatching in nematodes is triggered by maternal nutrient deprivation to allow for protection or resource provisioning of offspring. Here, we report natural Caenorhabditis elegans populations harboring genetic variants expressing a derived state of near-constitutive matricidal hatching. These variants exhibit a single amino acid change (V530L) in KCNL-1, a small-conductance calcium-activated potassium channel subunit. This gain-of-function mutation causes matricidal hatching by strongly reducing the sensitivity to environmental stimuli triggering egg-laying. We show that reestablishing the canonical KCNL-1 protein in matricidal isolates is sufficient to restore canonical egg-laying. While highly deleterious in constant food environments, KCNL-1 V530L is maintained under fluctuating resource availability. A single point mutation can therefore underlie the genetic assimilation-by either genetic drift or selection-of an ancestrally plastic trait.

3.
Front Fungal Biol ; 2: 729264, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37744137

RESUMEN

Transposable element (TE) insertions are a source of structural variation and can cause genetic instability and gene expression changes. A host can limit the spread of TEs with various repression mechanisms. Many examples of plant and animal interspecific hybrids show disrupted TE repression leading to TE propagation. Recent studies in yeast did not find any increase in transposition rate in hybrids. However, this does not rule out the possibility that the transcriptional or translational activity of TEs increases following hybridization because of a disruption of the host TE control mechanisms. Thus, whether total expression of a TE family is higher in hybrids than in their parental species remains to be examined. We leveraged publically available RNA-seq and ribosomal profiling data on yeast artificial hybrids of the Saccharomyces genus and performed differential expression analysis of their LTR retrotransposons (Ty elements). Our analyses of total mRNA levels show that Ty elements are generally not differentially expressed in hybrids, even when the hybrids are exposed to a low temperature stress condition. Overall, only 2/26 Ty families show significantly higher expression in the S. cerevisiae × S. uvarum hybrids while there are 3/26 showing significantly lower expression in the S. cerevisiae x S. paradoxus hybrids. Our analysis of ribosome profiling data of S. cerevisiae × S. paradoxus hybrids shows similar translation efficiency of Ty in both parents and hybrids, except for Ty1_cer showing higher translation efficiency. Overall, our results do not support the hypothesis that hybridization could act as a systematic trigger of TE expression in yeast and suggest that the impact of hybridization on TE activity is strain and TE specific.

4.
Evol Appl ; 13(6): 1335-1350, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32684962

RESUMEN

Much of the research in biology aims to understand the origin of diversity. Naturally, ecological diversity was the first object of study, but we now have the necessary tools to probe diversity at molecular scales. The inherent differences in how we study diversity at different scales caused the disciplines of biology to be organized around these levels, from molecular biology to ecology. Here, we illustrate that there are key properties of each scale that emerge from the interactions of simpler components and that these properties are often shared across different levels of organization. This means that ideas from one level of organization can be an inspiration for novel hypotheses to study phenomena at another level. We illustrate this concept with examples of events at the molecular level that have analogs at the organismal or ecological level and vice versa. Through these examples, we illustrate that biological processes at different organization levels are governed by general rules. The study of the same phenomena at different scales could enrich our work through a multidisciplinary approach, which should be a staple in the training of future scientists.

5.
Genome Res ; 30(5): 697-710, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32277013

RESUMEN

Aging varies among individuals due to both genetics and environment, but the underlying molecular mechanisms remain largely unknown. Using a highly recombined Saccharomyces cerevisiae population, we found 30 distinct quantitative trait loci (QTLs) that control chronological life span (CLS) in calorie-rich and calorie-restricted environments and under rapamycin exposure. Calorie restriction and rapamycin extended life span in virtually all genotypes but through different genetic variants. We tracked the two major QTLs to the cell wall glycoprotein genes FLO11 and HPF1 We found that massive expansion of intragenic tandem repeats within the N-terminal domain of HPF1 was sufficient to cause pronounced life span shortening. Life span impairment by HPF1 was buffered by rapamycin but not by calorie restriction. The HPF1 repeat expansion shifted yeast cells from a sedentary to a buoyant state, thereby increasing their exposure to surrounding oxygen. The higher oxygenation altered methionine, lipid, and purine metabolism, and inhibited quiescence, which explains the life span shortening. We conclude that fast-evolving intragenic repeat expansions can fundamentally change the relationship between cells and their environment with profound effects on cellular lifestyle and longevity.


Asunto(s)
Expansión de las Repeticiones de ADN , Proteínas de Saccharomyces cerevisiae/genética , Pared Celular , Genes Fúngicos , Metabolismo de los Lípidos , Glicoproteínas de Membrana/genética , Metionina/metabolismo , Purinas/metabolismo , Sitios de Carácter Cuantitativo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología
6.
PLoS Biol ; 17(11): e3000519, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31756186

RESUMEN

A gene duplication can lead to all sorts of problems in a cell. However, it can also lead to all sorts of benefits. Beneficial or not, the gene duplicates might be kept in the genome because of several different reasons. For instance, if natural selection works towards optimizing one function of a gene at the expense of another, then gene duplication could resolve this conflict by separating the functions in two genes. Here, we outline evolutionary incentives to keep a duplicated gene in the genome, focusing on divergence in expression and trade-off resolution as featured in a new and exciting paper published in this edition of PLOS Biology.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Evolución Biológica , Genes Duplicados , Selección Genética
7.
Genome Res ; 29(6): 932-943, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31152050

RESUMEN

Little is known about the rate of emergence of de novo genes, what their initial properties are, and how they spread in populations. We examined wild yeast populations (Saccharomyces paradoxus) to characterize the diversity and turnover of intergenic ORFs over short evolutionary timescales. We find that hundreds of intergenic ORFs show translation signatures similar to canonical genes, and we experimentally confirmed the translation of many of these ORFs in laboratory conditions using a reporter assay. Compared with canonical genes, intergenic ORFs have lower translation efficiency, which could imply a lack of optimization for translation or a mechanism to reduce their production cost. Translated intergenic ORFs also tend to have sequence properties that are generally close to those of random intergenic sequences. However, some of the very recent translated intergenic ORFs, which appeared <110 kya, already show gene-like characteristics, suggesting that the raw material for functional innovations could appear over short evolutionary timescales.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Sistemas de Lectura Abierta , Ribosomas/metabolismo , Transcripción Genética , Levaduras/genética , Levaduras/metabolismo , Evolución Biológica , Biosíntesis de Proteínas
8.
Cell Rep ; 21(3): 732-744, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29045840

RESUMEN

The joint contribution of pre-existing and de novo genetic variation to clonal adaptation is poorly understood but essential to designing successful antimicrobial or cancer therapies. To address this, we evolve genetically diverse populations of budding yeast, S. cerevisiae, consisting of diploid cells with unique haplotype combinations. We study the asexual evolution of these populations under selective inhibition with chemotherapeutic drugs by time-resolved whole-genome sequencing and phenotyping. All populations undergo clonal expansions driven by de novo mutations but remain genetically and phenotypically diverse. The clones exhibit widespread genomic instability, rendering recessive de novo mutations homozygous and refining pre-existing variation. Finally, we decompose the fitness contributions of pre-existing and de novo mutations by creating a large recombinant library of adaptive mutations in an ensemble of genetic backgrounds. Both pre-existing and de novo mutations substantially contribute to fitness, and the relative fitness of pre-existing variants sets a selective threshold for new adaptive mutations.


Asunto(s)
Mutación/genética , Saccharomyces cerevisiae/genética , Células Clonales , Frecuencia de los Genes/genética , Aptitud Genética , Genoma Fúngico , Inestabilidad Genómica , Pérdida de Heterocigocidad , Selección Genética
9.
Nat Genet ; 49(6): 913-924, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28416820

RESUMEN

Structural rearrangements have long been recognized as an important source of genetic variation, with implications in phenotypic diversity and disease, yet their detailed evolutionary dynamics remain elusive. Here we use long-read sequencing to generate end-to-end genome assemblies for 12 strains representing major subpopulations of the partially domesticated yeast Saccharomyces cerevisiae and its wild relative Saccharomyces paradoxus. These population-level high-quality genomes with comprehensive annotation enable precise definition of chromosomal boundaries between cores and subtelomeres and a high-resolution view of evolutionary genome dynamics. In chromosomal cores, S. paradoxus shows faster accumulation of balanced rearrangements (inversions, reciprocal translocations and transpositions), whereas S. cerevisiae accumulates unbalanced rearrangements (novel insertions, deletions and duplications) more rapidly. In subtelomeres, both species show extensive interchromosomal reshuffling, with a higher tempo in S. cerevisiae. Such striking contrasts between wild and domesticated yeasts are likely to reflect the influence of human activities on structural genome evolution.


Asunto(s)
Cromosomas Fúngicos , Evolución Molecular , Genoma Fúngico , Saccharomyces/genética , Evolución Biológica , Inversión Cromosómica , Genoma Mitocondrial/genética , Genómica/métodos , Saccharomyces cerevisiae/genética , Telómero/genética
10.
Nat Commun ; 7: 13311, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27804950

RESUMEN

Explaining trait differences between individuals is a core and challenging aim of life sciences. Here, we introduce a powerful framework for complete decomposition of trait variation into its underlying genetic causes in diploid model organisms. We sequence and systematically pair the recombinant gametes of two intercrossed natural genomes into an array of diploid hybrids with fully assembled and phased genomes, termed Phased Outbred Lines (POLs). We demonstrate the capacity of this approach by partitioning fitness traits of 6,642 Saccharomyces cerevisiae POLs across many environments, achieving near complete trait heritability and precisely estimating additive (73%), dominance (10%), second (7%) and third (1.7%) order epistasis components. We map quantitative trait loci (QTLs) and find nonadditive QTLs to outnumber (3:1) additive loci, dominant contributions to heterosis to outnumber overdominant, and extensive pleiotropy. The POL framework offers the most complete decomposition of diploid traits to date and can be adapted to most model organisms.


Asunto(s)
Diploidia , Modelos Genéticos , Saccharomyces cerevisiae/genética , Mapeo Cromosómico , Vigor Híbrido/genética , Hibridación Genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
11.
G3 (Bethesda) ; 6(9): 3003-14, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27371952

RESUMEN

The capacity to map traits over large cohorts of individuals-phenomics-lags far behind the explosive development in genomics. For microbes, the estimation of growth is the key phenotype because of its link to fitness. We introduce an automated microbial phenomics framework that delivers accurate, precise, and highly resolved growth phenotypes at an unprecedented scale. Advancements were achieved through the introduction of transmissive scanning hardware and software technology, frequent acquisition of exact colony population size measurements, extraction of population growth rates from growth curves, and removal of spatial bias by reference-surface normalization. Our prototype arrangement automatically records and analyzes close to 100,000 growth curves in parallel. We demonstrate the power of the approach by extending and nuancing the known salt-defense biology in baker's yeast. The introduced framework represents a major advance in microbial phenomics by providing high-quality data for extensive cohorts of individuals and generating well-populated and standardized phenomics databases.


Asunto(s)
Genómica/métodos , Saccharomyces cerevisiae/genética , Programas Informáticos , Bases de Datos Genéticas , Aptitud Genética , Humanos , Fenotipo , Saccharomyces cerevisiae/crecimiento & desarrollo
12.
Nat Commun ; 7: 11512, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27160605

RESUMEN

In spite of decades of linkage and association studies and its potential impact on human health, reliable prediction of an individual's risk for heritable disease remains difficult. Large numbers of mapped loci do not explain substantial fractions of heritable variation, leaving an open question of whether accurate complex trait predictions can be achieved in practice. Here, we use a genome sequenced population of ∼7,000 yeast strains of high but varying relatedness, and predict growth traits from family information, effects of segregating genetic variants and growth in other environments with an average coefficient of determination R(2) of 0.91. This accuracy exceeds narrow-sense heritability, approaches limits imposed by measurement repeatability and is higher than achieved with a single assay in the laboratory. Our results prove that very accurate prediction of complex traits is possible, and suggest that additional data from families rather than reference cohorts may be more useful for this purpose.


Asunto(s)
Genoma Fúngico , Carácter Cuantitativo Heredable , Saccharomyces cerevisiae/genética , Diploidia , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Hibridación Genética , Modelos Genéticos , Fenotipo , Sitios de Carácter Cuantitativo , Saccharomyces cerevisiae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA