Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(20): 206102, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829060

RESUMEN

The liquid-to-solid phase transition is a complex process that is difficult to investigate experimentally with sufficient spatial and temporal resolution. A key aspect of the transition is the formation of a critical seed of the crystalline phase in a supercooled liquid, that is, a liquid in a metastable state below the melting temperature. This stochastic process is commonly described within the framework of classical nucleation theory, but accurate tests of the theory in atomic and molecular liquids are challenging. Here, we employ femtosecond x-ray diffraction from microscopic liquid jets to study crystal nucleation in supercooled liquids of the rare gases argon and krypton. Our results provide stringent limits to the validity of classical nucleation theory in atomic liquids, and offer the long-sought possibility of testing nonclassical extensions of the theory.

2.
Sci Adv ; 10(16): eadm7876, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640237

RESUMEN

Stimuli-responsive polymers are an important class of materials with many applications in nanotechnology and drug delivery. The most prominent one is poly-N-isopropylacrylamide (PNIPAm). The characterization of the kinetics of its change after a temperature jump is still a lively research topic, especially at nanometer-length scales where it is not possible to rely on conventional microscopic techniques. Here, we measured in real time the collapse of a PNIPAm shell on silica nanoparticles with megahertz x-ray photon correlation spectroscopy at the European XFEL. We characterize the changes of the particles diffusion constant as a function of time and consequently local temperature on sub-microsecond timescales. We developed a phenomenological model to describe the observed data and extract the characteristic times associated to the swelling and collapse processes. Different from previous studies tracking the turbidity of PNIPAm dispersions and using laser heating, we find collapse times below microsecond timescales and two to three orders of magnitude slower swelling times.

3.
J Synchrotron Radiat ; 31(Pt 3): 596-604, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587894

RESUMEN

The Materials Imaging and Dynamics (MID) instrument at the European X-ray Free-Electron Laser Facility (EuXFEL) is equipped with a multipurpose diagnostic end-station (DES) at the end of the instrument. The imager unit in DES is a key tool for aligning the beam to a standard trajectory and for adjusting optical elements such as focusing lenses or the split-and-delay line. Furthermore, the DES features a bent-diamond-crystal spectrometer to disperse the spectrum of the direct beam to a line detector. This enables pulse-resolved characterization of the EuXFEL spectrum to provide X-ray energy calibration, and the spectrometer is particularly useful in commissioning special modes of the accelerator. Together with diamond-based intensity monitors, the imager and spectrometer form the DES unit which also contains a heavy-duty beamstop at the end of the MID instrument. Here, we describe the setup in detail and provide exemplary beam diagnostic results.

4.
Exp Fluids ; 65(2): 20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313751

RESUMEN

In this work, we study the jetting dynamics of individual cavitation bubbles using x-ray holographic imaging and high-speed optical shadowgraphy. The bubbles are induced by a focused infrared laser pulse in water near the surface of a flat, circular glass plate, and later probed with ultrashort x-ray pulses produced by an x-ray free-electron laser (XFEL). The holographic imaging can reveal essential information of the bubble interior that would otherwise not be accessible in the optical regime due to obscuration or diffraction. The influence of asymmetric boundary conditions on the jet's characteristics is analysed for cases where the axial symmetry is perturbed and curved liquid filaments can form inside the cavity. The x-ray images demonstrate that when oblique jets impact the rigid boundary, they produce a non-axisymmetric splash which grows from a moving stagnation point. Additionally, the images reveal the formation of complex gas/liquid structures inside the jetting bubbles that are invisible to standard optical microscopy. The experimental results are analysed with the assistance of full three-dimensional numerical simulations of the Navier-Stokes equations in their compressible formulation, which allow a deeper understanding of the distinctive features observed in the x-ray holographic images. In particular, the effects of varying the dimensionless stand-off distances measured from the initial bubble location to the surface of the solid plate and also to its nearest edge are addressed using both experiments and simulations. A relation between the jet tilting angle and the dimensionless bubble position asymmetry is derived. The present study provides new insights into bubble jetting and demonstrates the potential of x-ray holography for future investigations in this field. Supplementary Information: The online version contains supplementary material available at 10.1007/s00348-023-03759-9.

5.
Nature ; 622(7983): 471-475, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758953

RESUMEN

Resonant oscillators with stable frequencies and large quality factors help us to keep track of time with high precision. Examples range from quartz crystal oscillators in wristwatches to atomic oscillators in atomic clocks, which are, at present, our most precise time measurement devices1. The search for more stable and convenient reference oscillators is continuing2-6. Nuclear oscillators are better than atomic oscillators because of their naturally higher quality factors and higher resilience against external perturbations7-9. One of the most promising cases is an ultra-narrow nuclear resonance transition in 45Sc between the ground state and the 12.4-keV isomeric state with a long lifetime of 0.47 s (ref. 10). The scientific potential of 45Sc was realized long ago, but applications require 45Sc resonant excitation, which in turn requires accelerator-driven, high-brightness X-ray sources11 that have become available only recently. Here we report on resonant X-ray excitation of the 45Sc isomeric state by irradiation of Sc-metal foil with 12.4-keV photon pulses from a state-of-the-art X-ray free-electron laser and subsequent detection of nuclear decay products. Simultaneously, the transition energy was determined as [Formula: see text] with an uncertainty that is two orders of magnitude smaller than the previously known values. These advancements enable the application of this isomer in extreme metrology, nuclear clock technology, ultra-high-precision spectroscopy and similar applications.

6.
Nat Commun ; 13(1): 5528, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130930

RESUMEN

X-ray free-electron lasers (XFELs) with megahertz repetition rate can provide novel insights into structural dynamics of biological macromolecule solutions. However, very high dose rates can lead to beam-induced dynamics and structural changes due to radiation damage. Here, we probe the dynamics of dense antibody protein (Ig-PEG) solutions using megahertz X-ray photon correlation spectroscopy (MHz-XPCS) at the European XFEL. By varying the total dose and dose rate, we identify a regime for measuring the motion of proteins in their first coordination shell, quantify XFEL-induced effects such as driven motion, and map out the extent of agglomeration dynamics. The results indicate that for average dose rates below 1.06 kGy µs-1 in a time window up to 10 µs, it is possible to capture the protein dynamics before the onset of beam induced aggregation. We refer to this approach as correlation before aggregation and demonstrate that MHz-XPCS bridges an important spatio-temporal gap in measurement techniques for biological samples.


Asunto(s)
Electrones , Rayos Láser , Inmunoglobulinas , Proteínas/química , Radiografía , Rayos X
7.
IUCrJ ; 8(Pt 5): 775-783, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34584738

RESUMEN

Many soft-matter systems are composed of macromolecules or nanoparticles suspended in water. The characteristic times at intrinsic length scales of a few nanometres fall therefore in the microsecond and sub-microsecond time regimes. With the development of free-electron lasers (FELs) and fourth-generation synchrotron light-sources, time-resolved experiments in such time and length ranges will become routinely accessible in the near future. In the present work we report our findings on prototypical soft-matter systems, composed of charge-stabilized silica nanoparticles dispersed in water, with radii between 12 and 15 nm and volume fractions between 0.005 and 0.2. The sample dynamics were probed by means of X-ray photon correlation spectroscopy, employing the megahertz pulse repetition rate of the European XFEL and the Adaptive Gain Integrating Pixel Detector. We show that it is possible to correctly identify the dynamical properties that determine the diffusion constant, both for stationary samples and for systems driven by XFEL pulses. Remarkably, despite the high photon density the only observable induced effect is the heating of the scattering volume, meaning that all other X-ray induced effects do not influence the structure and the dynamics on the probed timescales. This work also illustrates the potential to control such induced heating and it can be predicted with thermodynamic models.

8.
J Synchrotron Radiat ; 28(Pt 3): 987-994, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33950007

RESUMEN

Single-pulse holographic imaging at XFEL sources with 1012 photons delivered in pulses shorter than 100 fs reveal new quantitative insights into fast phenomena. Here, a timing and synchronization scheme for stroboscopic imaging and quantitative analysis of fast phenomena on time scales (sub-ns) and length-scales (≲100 nm) inaccessible by visible light is reported. A fully electronic delay-and-trigger system has been implemented at the MID station at the European XFEL, and applied to the study of emerging laser-driven cavitation bubbles in water. Synchronization and timing precision have been characterized to be better than 1 ns.

9.
J Synchrotron Radiat ; 28(Pt 1): 52-63, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399552

RESUMEN

X-ray free-electron lasers (XFELs) have opened up unprecedented opportunities for time-resolved nano-scale imaging with X-rays. Near-field propagation-based imaging, and in particular near-field holography (NFH) in its high-resolution implementation in cone-beam geometry, can offer full-field views of a specimen's dynamics captured by single XFEL pulses. To exploit this capability, for example in optical-pump/X-ray-probe imaging schemes, the stochastic nature of the self-amplified spontaneous emission pulses, i.e. the dynamics of the beam itself, presents a major challenge. In this work, a concept is presented to address the fluctuating illumination wavefronts by sampling the configuration space of SASE pulses before an actual recording, followed by a principal component analysis. This scheme is implemented at the MID (Materials Imaging and Dynamics) instrument of the European XFEL and time-resolved NFH is performed using aberration-corrected nano-focusing compound refractive lenses. Specifically, the dynamics of a micro-fluidic water-jet, which is commonly used as sample delivery system at XFELs, is imaged. The jet exhibits rich dynamics of droplet formation in the break-up regime. Moreover, pump-probe imaging is demonstrated using an infrared pulsed laser to induce cavitation and explosion of the jet.

10.
J Synchrotron Radiat ; 26(Pt 5): 1705-1715, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31490162

RESUMEN

This paper reports on coherent scattering experiments in the low-count regime with less than one photon per pixel per acquisition on average, conducted with two detectors based on the Eiger single-photon-counting chip. The obtained photon-count distributions show systematic deviations from the expected Poisson-gamma distribution, which result in a strong overestimation of the measured speckle contrast. It is shown that these deviations originate from an artificial increase of double-photon events, which is proportional to the detected intensity and inversely proportional to the exposure time. The observed miscounting effect may have important implications for new coherent scattering experiments emerging with the advent of high-brilliance X-ray sources. Different correction schemes are discussed in order to obtain the correct photon distributions from the data. A successful correction is demonstrated with the measurement of Brownian motion from colloidal particles using X-ray speckle visibility spectroscopy.

11.
Phys Rev Lett ; 121(25): 256101, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30608794

RESUMEN

We show three-dimensional images of phase ordering in a Fe_{55}Al_{45} alloy obtained by coherent x-ray diffraction Bragg ptychography. Fe-Al alloys display ordered phases where the atoms organize on sublattices resulting in the emergence of otherwise forbidden superlattice reflections. The degeneracy of the ordering results in antiphase domain boundaries that, in addition to the general lattice strain, provide phase shifts of the diffracted beam depending on the reflection. The reconstructed phase images can be separated into components originating from B2 phase domains and lattice strain by performing Bragg ptychography on both the (002) fundamental and the (001) superlattice reflections.

12.
J Phys Chem B ; 116(36): 10996-1003, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22934959

RESUMEN

Time-resolved diffuse X-ray scattering is one powerful method for monitoring the progression from the creation of local structural changes inside a crystalline material up to the transformation of the whole crystalline bulk. In this work, we study the mechanism of phototransformation of a molecular crystal by time-resolved diffuse X-ray scattering. Here, an optical excitation source, like a pulsed laser, initiates structural transformations which are monitored by X-ray scattering techniques. We have studied the dimerization process of the molecular switch α-styrylpyrylium (trifluoromethanesulfonate) TFMS, in particular for understanding whether cooperative effects influence the changes of the structure in the bulk and its periodicity. Upon illumination with optical light, α-styrylpyrylium TFMS instantaneously photoswitches. Depending on the optical fluence, X-ray diffuse planes are observed prior to phototransformation of the bulk. In the early stages of transformation, the analysis reveals systems of randomly distributed islands of product clusters with gradual growth in size and amount. The degree of transformation follows the optical excitation profile, i.e., the spatial absorption of the laser beam. In the present studies, no influence of cooperativity on the photodimerization process has been found.


Asunto(s)
Piranos/química , Estirenos/química , Cristalización , Dimerización , Procesos Fotoquímicos , Difracción de Rayos X
13.
J Am Chem Soc ; 131(41): 15018-25, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19824735

RESUMEN

The ultrafast structural dynamics of the [2+2] photocycloaddition of alpha-styrylpyrylium trifluoromethanesulfonate (TFMS) has been studied in great detail. During the photoreaction, optical and infrared spectroscopy confirms that crystals of alpha-styrylpyrylium change color. Since the reaction is reversible, it has been suggested to be used as an organic holographic storage device. The present photocrystallographic studies (with high spatial resolution) allow for an electron density analysis of the overall reaction kinetics, revealing the mechanism of bond-breaking and bond-formation. It could furthermore be proved how the reaction is influenced by the rearrangement of the surrounding moieties. Picosecond time-resolved X-ray diffraction studies allow for the monitoring the photoreaction in crystalline thin films under experimental conditions where the transformation times are greatly enhanced. These investigations are discussed in the context of the photocrystallographic results. It has been found that alpha-styrylpyrylium TFMS undergoes an ultrafast photoreaction to the dimer product state and back-reaction to the monomer reactant state which is temperature driven. The present experiments indicate that TFMS reacts on time scales which are the fundamental limiting ones of two-quantum systems and therefore has the potential to be used as an ultrafast organic molecular switcher.


Asunto(s)
Alcanosulfonatos/química , Piranos/química , Estirenos/química , Cristalografía por Rayos X , Dimerización , Electrones , Procesos Fotoquímicos , Espectrofotometría Infrarroja , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...