Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Res Toxicol ; 3: 100086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36157598

RESUMEN

The cardiac embryonic stem cell test (ESTc) is a well-studied non-animal alternative test method based on cardiac cell differentiation inhibition as a measure for developmental toxicity of tested chemicals. In the ESTc, a heterogenic cell population is generated besides cardiomyocytes. Using the full biological domain of ESTc may improve the sensitivity of the test system, possibly broadening the range of chemicals for which developmental effects can be detected in the test. In order to improve our knowledge of the biological and chemical applicability domains of the ESTc, we applied a hypothesis-generating data-driven approach on control samples as follows. A genome-wide expression screening was performed, using Next Generation Sequencing (NGS), to map the range of developmental pathways in the ESTc and to search for a predictive embryotoxicity biomarker profile, instead of the conventional read-out of beating cardiomyocytes. The detected developmental pathways included circulatory system development, skeletal system development, heart development, muscle and organ tissue development, and nervous system and cell development. Two pesticidal chemical classes, the morpholines and piperidines, were assessed for perturbation of differentiation in the ESTc using NGS. In addition to the anticipated impact on cardiomyocyte differentiation, the other developmental pathways were also regulated, in a concentration-response fashion. Despite the structural differences between the morpholine and piperidine pairs, their gene expression effect patterns were largely comparable. In addition, some chemical-specific gene regulation was also observed, which may help with future mechanistic understanding of specific effects with individual test compounds. These similar and unique regulations of gene expression profiles by the test compounds, adds to our knowledge of the chemical applicability domain, specificity and sensitivity of the ESTc. Knowledge of both the biological and chemical applicability domain contributes to the optimal placement of ESTc in test batteries and in Integrated Approaches to Testing and Assessment (IATA).

2.
Toxicol Appl Pharmacol ; 433: 115781, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34737147

RESUMEN

The cardiac embryonic stem cell test (ESTc) is an in vitro embryotoxicity screen which uses cardiomyocyte formation as the main differentiation route. Studies are ongoing into whether an improved specification of the biological domain can broaden the applicability of the test, e.g. to discriminate between structurally similar chemicals by measuring expression of dedicated gene transcript biomarkers. We explored this with two chemical classes: morpholines (tridemorph; fenpropimorph) and piperidines (fenpropidin; spiroxamine). These compounds cause embryotoxicity in rat such as cleft palate. This malformation can be linked to interference with retinoic acid balance, neural crest (NC) cell migration, or cholesterol biosynthesis. Also neural differentiation within the ESTc was explored in relation to these compounds. Gene transcript expression of related biomarkers were measured at low and high concentrations on differentiation day 4 (DD4) and DD10. All compounds showed stimulating effects on the cholesterol biosynthesis related marker Msmo1 after 24 h exposure and tridemorph showed inhibition of Cyp26a1 which codes for one of the enzymes that metabolises retinoic acid. A longer exposure duration enhanced expression levels for differentiation markers for cardiomyocytes (Nkx2-5; Myh6) and neural cells (Tubb3) on DD10. This readout gave additional mechanistic insight which enabled previously unavailable in vitro discrimination between the compounds, showing the practical utility of specifying the biological domain of the ESTc.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Morfolinas/toxicidad , Células Madre Embrionarias de Ratones/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Piperidinas/toxicidad , Pruebas de Toxicidad , Animales , Células Cultivadas , Redes Reguladoras de Genes , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Ratones , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Ácido Retinoico 4-Hidroxilasa/genética , Ácido Retinoico 4-Hidroxilasa/metabolismo , Medición de Riesgo , Compuestos de Espiro/toxicidad , Factores de Tiempo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
3.
Toxicol Rep ; 8: 1513-1520, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34401361

RESUMEN

The cardiac embryonic stem cell test (ESTc) originally used the differentiation of beating cardiomyocytes for embryotoxicity screenings of compounds. However, the ESTc consists of a heterogeneous cell population, including neural crest (NC) cells, which are important contributors to heart development in vivo. Molecular markers for NC cells were investigated to explore if this approach improved discrimination between structurally related chemicals, using the three organophosphates (OP): chlorpyrifos (CPF), malathion (MLT), and triphenyl phosphate (TPP). To decrease the test duration and to improve the objective quantification of the assay read-out, gene transcript biomarkers were measured on study day 4 instead of the traditional cardiomyocyte beating assessment at day 10. Gene expression profiling and immunocytochemistry were performed using markers for pluripotency, proliferation and cardiomyocyte and NC differentiation. Cell proliferation was also assessed by measurements of embryoid body (EB) size and total protein quantification (day 7). Exposure to the OPs resulted in similar patterns of inhibition of beating cardiomyocyte differentiation and of myosin protein expression on day 10. However, these three chemically related compounds induced distinctive effects on NC cell differentiation, indicated by changes in expression levels of the NC precursor (Msx2), NC marker (Ap2α), and epithelial to mesenchymal transition (EMT; Snai2) gene transcripts. This study shows that investigating NC markers can provide added value for ESTc outcome profiling and may enhance the applicability of this assay for the screening of structurally related test chemicals.

4.
Regul Toxicol Pharmacol ; 59(3): 445-53, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21295096

RESUMEN

A Type III Built-up Roofing Asphalt (BURA) fume condensate was evaluated for subchronic systemic toxicity and reproductive/developmental toxicity screening in Wistar rats, by OECD protocol 422 and OECD cytogenetic protocol 474. Animals were exposed by nose-only inhalation to target concentrations of 30, 100 and 300 mg/m³ total hydrocarbons (actual concentrations, 30.0, 100.1 and 297.3 mg/m³). The study was performed to assess potential hazards from asphalt fumes to which humans could be exposed during application. No adverse effects were seen for spermology, reproductive or developmental parameters or early postnatal development of offspring from day 1 to 4 postpartum. BURA fume condensate did not induce any significant increases in micronucleus frequency in polychromatic erythrocytes of rat bone marrow nor was neurobehavioral toxicity observed at any dose. Systemic effects were slight and seen at doses above those measured at work sites. The systemic NOAEC of 100 mg/m³ for males was based on decreased body weight gain, food consumption and increased absolute and relative lung wet weight correlated with slight histological changes in the lung, primarily adaptive in nature at 300 mg/m³. The female NOAEC of 30 mg/m³ was based on a statistically significant increase in relative wet lung weight at higher doses, correlated with slight histopathologic effects in the lungs at the highest dose. However, no increase in relative lung weight was seen in breeding females at 100 mg/m³.


Asunto(s)
Hidrocarburos/administración & dosificación , Hidrocarburos/toxicidad , Exposición por Inhalación , Pulmón/efectos de los fármacos , Reproducción/efectos de los fármacos , Administración por Inhalación , Administración Intranasal , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Análisis Citogenético/métodos , Esquema de Medicación , Evaluación Preclínica de Medicamentos/métodos , Monitoreo del Ambiente/métodos , Femenino , Exposición por Inhalación/efectos adversos , Pulmón/crecimiento & desarrollo , Masculino , Embarazo , Ratas , Ratas Wistar , Reproducción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...