Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Exp Bot ; 74(3): 991-1003, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36367575

RESUMEN

Recent studies have demonstrated the importance of temporal regulation of pathogen defense by the circadian clock. However, our understanding of the molecular basis underlying this role of the circadian clock is still in its infancy. We report here the mechanism by which the Arabidopsis master clock protein CCA1 regulates an output target gene GRP7 for its circadian expression and function in pathogen defense. Our data firmly establish that CCA1 physically associates with the GRP7 promoter via the predicted CCA1-binding motif, evening element (EE). A site-directed mutagenesis study showed that while individual EE motifs differentially contribute to robust circadian expression of GRP7, abolishing all four EE motifs in the proximal GRP7 promoter disrupts rhythmicity of GRP7 expression and results in misalignment of defense signaling mediated by GRP7 and altered pathogen responses. This study provides a mechanistic link of the circadian regulation of an output gene to its biological function in pathogen defense, underscoring the importance of temporal control of plant innate immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Arabidopsis/metabolismo , Glicina/genética , Glicina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Inmunidad Innata/genética , Regulación de la Expresión Génica de las Plantas , Ritmo Circadiano/genética
2.
Nat Commun ; 10(1): 2543, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186426

RESUMEN

The circadian clock is known to regulate plant innate immunity but the underlying mechanism of this regulation remains largely unclear. We show here that mutations in the core clock component LUX ARRHYTHMO (LUX) disrupt circadian regulation of stomata under free running and Pseudomonas syringae challenge conditions as well as defense signaling mediated by SA and JA, leading to compromised disease resistance. RNA-seq analysis reveals that both clock- and defense-related genes are regulated by LUX. LUX binds to clock gene promoters that have not been shown before, expanding the clock gene networks that require LUX function. LUX also binds to the promoters of EDS1 and JAZ5, likely acting through these genes to affect SA- and JA-signaling. We further show that JA signaling reciprocally affects clock activity. Thus, our data support crosstalk between the circadian clock and plant innate immunity and imply an important role of LUX in this process.


Asunto(s)
Arabidopsis/genética , Relojes Circadianos/genética , Inmunidad de la Planta/genética , Arabidopsis/microbiología , Relojes Circadianos/fisiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Estomas de Plantas/fisiología , Pseudomonas syringae/fisiología , Análisis de Secuencia de ARN
3.
Mol Cell ; 74(2): 245-253.e6, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30826165

RESUMEN

Transcription factors (TFs) control gene expression by binding DNA recognition sites in genomic regulatory regions. Although most forkhead TFs recognize a canonical forkhead (FKH) motif, RYAAAYA, some forkheads recognize a completely different (FHL) motif, GACGC. Bispecific forkhead proteins recognize both motifs, but the molecular basis for bispecific DNA recognition is not understood. We present co-crystal structures of the FoxN3 DNA binding domain bound to the FKH and FHL sites, respectively. FoxN3 adopts a similar conformation to recognize both motifs, making contacts with different DNA bases using the same amino acids. However, the DNA structure is different in the two complexes. These structures reveal how a single TF binds two unrelated DNA sequences and the importance of DNA shape in the mechanism of bispecific recognition.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Unión al ADN/química , ADN/química , Conformación de Ácido Nucleico , Proteínas Represoras/química , Secuencia de Aminoácidos/genética , Secuencia de Bases/genética , Sitios de Unión/genética , Proteínas de Ciclo Celular/genética , Cristalografía por Rayos X , ADN/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción Forkhead , Regulación de la Expresión Génica/genética , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Motivos de Nucleótidos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...