Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 9149, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39443444

RESUMEN

MicroRNAs (miRNAs) have been implicated in human disorders, from cancers to infectious diseases. Targeting miRNAs or their target genes with small molecules offers opportunities to modulate dysregulated cellular processes linked to diseases. Yet, predicting small molecules associated with miRNAs remains challenging due to the small size of small molecule-miRNA datasets. Herein, we develop a generalized deep learning framework, sChemNET, for predicting small molecules affecting miRNA bioactivity based on chemical structure and sequence information. sChemNET overcomes the limitation of sparse chemical information by an objective function that allows the neural network to learn chemical space from a large body of chemical structures yet unknown to affect miRNAs. We experimentally validated small molecules predicted to act on miR-451 or its targets and tested their role in erythrocyte maturation during zebrafish embryogenesis. We also tested small molecules targeting the miR-181 network and other miRNAs using in-vitro and in-vivo experiments. We demonstrate that our machine-learning framework can predict bioactive small molecules targeting miRNAs or their targets in humans and other mammalian organisms.


Asunto(s)
Aprendizaje Profundo , MicroARNs , Pez Cebra , MicroARNs/genética , MicroARNs/metabolismo , Pez Cebra/genética , Animales , Humanos , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Redes Neurales de la Computación
2.
Nat Commun ; 15(1): 4825, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862542

RESUMEN

Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.


Asunto(s)
Astronautas , Radiación Cósmica , MicroARNs , Vuelo Espacial , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Radiación Cósmica/efectos adversos , Roturas del ADN de Doble Cadena/efectos de la radiación , Traumatismos por Radiación/genética , Traumatismos por Radiación/prevención & control , Masculino , Mitocondrias/efectos de la radiación , Mitocondrias/metabolismo , Mitocondrias/genética , Femenino , Adulto
3.
Pharmacol Res ; 204: 107170, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614374

RESUMEN

To determine the effects of SARS-CoV-2 infection on cellular metabolism, we conducted an exhaustive survey of the cellular metabolic pathways modulated by SARS-CoV-2 infection and confirmed their importance for SARS-CoV-2 propagation by cataloging the effects of specific pathway inhibitors. This revealed that SARS-CoV-2 strongly inhibits mitochondrial oxidative phosphorylation (OXPHOS) resulting in increased mitochondrial reactive oxygen species (mROS) production. The elevated mROS stabilizes HIF-1α which redirects carbon molecules from mitochondrial oxidation through glycolysis and the pentose phosphate pathway (PPP) to provide substrates for viral biogenesis. mROS also induces the release of mitochondrial DNA (mtDNA) which activates innate immunity. The restructuring of cellular energy metabolism is mediated in part by SARS-CoV-2 Orf8 and Orf10 whose expression restructures nuclear DNA (nDNA) and mtDNA OXPHOS gene expression. These viral proteins likely alter the epigenome, either by directly altering histone modifications or by modulating mitochondrial metabolite substrates of epigenome modification enzymes, potentially silencing OXPHOS gene expression and contributing to long-COVID.


Asunto(s)
COVID-19 , Mitocondrias , Fosforilación Oxidativa , SARS-CoV-2 , Humanos , COVID-19/metabolismo , COVID-19/genética , COVID-19/virología , Mitocondrias/metabolismo , Mitocondrias/genética , Especies Reactivas de Oxígeno/metabolismo , Epigénesis Genética , Metabolismo Energético , Epigenómica , Animales
4.
medRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38076862

RESUMEN

The orphan gene of SARS-CoV-2, ORF10, is the least studied gene in the virus responsible for the COVID-19 pandemic. Recent experimentation indicated ORF10 expression moderates innate immunity in vitro. However, whether ORF10 affects COVID-19 in humans remained unknown. We determine that the ORF10 sequence is identical to the Wuhan-Hu-1 ancestral haplotype in 95% of genomes across five variants of concern (VOC). Four ORF10 variants are associated with less virulent clinical outcomes in the human host: three of these affect ORF10 protein structure, one affects ORF10 RNA structural dynamics. RNA-Seq data from 2070 samples from diverse human cells and tissues reveals ORF10 accumulation is conditionally discordant from that of other SARS-CoV-2 transcripts. Expression of ORF10 in A549 and HEK293 cells perturbs immune-related gene expression networks, alters expression of the majority of mitochondrially-encoded genes of oxidative respiration, and leads to large shifts in levels of 14 newly-identified transcripts. We conclude ORF10 contributes to more severe COVID-19 clinical outcomes in the human host.

5.
Sci Transl Med ; 15(708): eabq1533, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556555

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins bind to host mitochondrial proteins, likely inhibiting oxidative phosphorylation (OXPHOS) and stimulating glycolysis. We analyzed mitochondrial gene expression in nasopharyngeal and autopsy tissues from patients with coronavirus disease 2019 (COVID-19). In nasopharyngeal samples with declining viral titers, the virus blocked the transcription of a subset of nuclear DNA (nDNA)-encoded mitochondrial OXPHOS genes, induced the expression of microRNA 2392, activated HIF-1α to induce glycolysis, and activated host immune defenses including the integrated stress response. In autopsy tissues from patients with COVID-19, SARS-CoV-2 was no longer present, and mitochondrial gene transcription had recovered in the lungs. However, nDNA mitochondrial gene expression remained suppressed in autopsy tissue from the heart and, to a lesser extent, kidney, and liver, whereas mitochondrial DNA transcription was induced and host-immune defense pathways were activated. During early SARS-CoV-2 infection of hamsters with peak lung viral load, mitochondrial gene expression in the lung was minimally perturbed but was down-regulated in the cerebellum and up-regulated in the striatum even though no SARS-CoV-2 was detected in the brain. During the mid-phase SARS-CoV-2 infection of mice, mitochondrial gene expression was starting to recover in mouse lungs. These data suggest that when the viral titer first peaks, there is a systemic host response followed by viral suppression of mitochondrial gene transcription and induction of glycolysis leading to the deployment of antiviral immune defenses. Even when the virus was cleared and lung mitochondrial function had recovered, mitochondrial function in the heart, kidney, liver, and lymph nodes remained impaired, potentially leading to severe COVID-19 pathology.


Asunto(s)
COVID-19 , Cricetinae , Humanos , Animales , Ratones , COVID-19/patología , SARS-CoV-2 , Roedores , Genes Mitocondriales , Pulmón/patología
6.
Pharmacogenomics ; 22(8): 473-484, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34036795

RESUMEN

Aim: The ERBB gene family plays an important role in cell proliferation and differentiation, and aberrant activations could result in tumorigenesis, which makes this gene family an attractive drug target in the area of precision oncology. Materials & methods: Functional divergence analysis and conservation analysis were performed using ClustalW, MEGA7 and DIVERGE3 software. Results: One hundred and forty five functional divergence residues sites, 94 totally conserved sites and averagely 345 conserved sites of individual gene member were obtained. Some have been reported to play role in drug binding, tumorigenesis and drug resistance. Conclusion: Functional divergence residues with high posterior probabilities and conserved residues may possess certain functions, and aberrant alterations may confer drug resistance or contribute to tumorigenesis.


Asunto(s)
Receptores ErbB/genética , Carcinogénesis/genética , Resistencia a Medicamentos/genética , Humanos , Neoplasias/genética , Medicina de Precisión/métodos
7.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33876217

RESUMEN

Current cancer genomics databases have accumulated millions of somatic mutations that remain to be further explored. Due to the over-excess mutations unrelated to cancer, the great challenge is to identify somatic mutations that are cancer-driven. Under the notion that carcinogenesis is a form of somatic-cell evolution, we developed a two-component mixture model: while the ground component corresponds to passenger mutations, the rapidly evolving component corresponds to driver mutations. Then, we implemented an empirical Bayesian procedure to calculate the posterior probability of a site being cancer-driven. Based on these, we developed a software CanDriS (Cancer Driver Sites) to profile the potential cancer-driving sites for thousands of tumor samples from the Cancer Genome Atlas and International Cancer Genome Consortium across tumor types and pan-cancer level. As a result, we identified that approximately 1% of the sites have posterior probabilities larger than 0.90 and listed potential cancer-wide and cancer-specific driver mutations. By comprehensively profiling all potential cancer-driving sites, CanDriS greatly enhances our ability to refine our knowledge of the genetic basis of cancer and might guide clinical medication in the upcoming era of precision medicine. The results were displayed in a database CandrisDB (http://biopharm.zju.edu.cn/candrisdb/).


Asunto(s)
Algoritmos , Biología Computacional/métodos , Bases de Datos Genéticas , Modelos Genéticos , Mutación , Neoplasias/genética , Teorema de Bayes , Benchmarking/métodos , Genómica/métodos , Humanos , Internet , Interfaz Usuario-Computador
8.
Elife ; 92020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32412410

RESUMEN

Efficient precision genome engineering requires high frequency and specificity of integration at the genomic target site. Here, we describe a set of resources to streamline reporter gene knock-ins in zebrafish and demonstrate the broader utility of the method in mammalian cells. Our approach uses short homology of 24-48 bp to drive targeted integration of DNA reporter cassettes by homology-mediated end joining (HMEJ) at high frequency at a double strand break in the targeted gene. Our vector series, pGTag (plasmids for Gene Tagging), contains reporters flanked by a universal CRISPR sgRNA sequence which enables in vivo liberation of the homology arms. We observed high rates of germline transmission (22-100%) for targeted knock-ins at eight zebrafish loci and efficient integration at safe harbor loci in porcine and human cells. Our system provides a straightforward and cost-effective approach for high efficiency gene targeting applications in CRISPR and TALEN compatible systems.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnicas de Sustitución del Gen , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Proteínas Asociadas a CRISPR/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Reparación del ADN por Recombinación , Homología de Secuencia de Ácido Nucleico , Sus scrofa , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo
9.
Dis Model Mech ; 11(6)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29914980

RESUMEN

In this study, we used comparative genomics and developmental genetics to identify epigenetic regulators driving oncogenesis in a zebrafish retinoblastoma 1 (rb1) somatic-targeting model of RB1 mutant embryonal brain tumors. Zebrafish rb1 brain tumors caused by TALEN or CRISPR targeting are histologically similar to human central nervous system primitive neuroectodermal tumors (CNS-PNETs). Like the human oligoneural OLIG2+/SOX10+ CNS-PNET subtype, zebrafish rb1 tumors show elevated expression of neural progenitor transcription factors olig2, sox10, sox8b and the receptor tyrosine kinase erbb3a oncogene. Comparison of rb1 tumor and rb1/rb1 germline mutant larval transcriptomes shows that the altered oligoneural precursor signature is specific to tumor tissue. More than 170 chromatin regulators were differentially expressed in rb1 tumors, including overexpression of chromatin remodeler components histone deacetylase 1 (hdac1) and retinoblastoma binding protein 4 (rbbp4). Germline mutant analysis confirms that zebrafish rb1, rbbp4 and hdac1 are required during brain development. rb1 is necessary for neural precursor cell cycle exit and terminal differentiation, rbbp4 is required for survival of postmitotic precursors, and hdac1 maintains proliferation of the neural stem cell/progenitor pool. We present an in vivo assay using somatic CRISPR targeting plus live imaging of histone-H2A.F/Z-GFP fusion protein in developing larval brain to rapidly test the role of chromatin remodelers in neural stem and progenitor cells. Our somatic assay recapitulates germline mutant phenotypes and reveals a dynamic view of their roles in neural cell populations. Our study provides new insight into the epigenetic processes that might drive pathogenesis in RB1 brain tumors, and identifies Rbbp4 and its associated chromatin remodeling complexes as potential target pathways to induce apoptosis in RB1 mutant brain cancer cells.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Epigénesis Genética , Histona Desacetilasa 1/genética , Células-Madre Neurales/metabolismo , Proteína de Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Proliferación Celular/genética , Supervivencia Celular , Histona Desacetilasa 1/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína 4 de Unión a Retinoblastoma/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...