Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Lett ; 437: 25-34, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30165193

RESUMEN

Tumor-associated macrophages (TAMs) are major components of tumor microenvironment that promote invasion and metastasis of cancer cells. In this study, we investigated the effect of TAMs on phenotypic conversion of non-neoplastic MCF10A human breast epithelial cells using an indirect co-culture system. Co-culture with TAMs induced epithelial-to-mesenchymal transition, invasive phenotype, and MMP-9 upregulation in MCF10A cells. Comparative proteomic analysis revealed that endoplasmic reticulum oxidoreductase (ERO)1-α was increased in MCF10A cells co-cultured with TAMs compared to that in mono-cultured cells. ERO1-α was crucial for TAMs-induced invasive phenotype and MMP-9 upregulation involving transcription factors c-fos and c-Jun. Cytokine array analysis showed that levels of interleukin (IL)-6, C-X-C motif ligand (CXCL)1, C-C motif ligand (CCL)2, growth-regulated protein (GRO), IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in conditioned media of co-cultured cells. Among these cytokines increased in conditioned media of co-cultured cells, CCL2 was secreted from TAMs, leading to induction of ERO1-α, MMP-9 upregulation, and invasiveness in MCF10A cells. Our findings elucidated a molecular mechanism underlying the aggressive phenotypic change of non-neoplastic breast cells by co-culture with TAMs, providing useful information for prevention or treatment of recurrent breast cancer.


Asunto(s)
Quimiocina CCL2/metabolismo , Células Epiteliales/metabolismo , Macrófagos/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Glicoproteínas de Membrana/metabolismo , Oxidorreductasas/metabolismo , Mama/citología , Mama/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Citocinas/metabolismo , Células Epiteliales/citología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Macrófagos/citología , Fenotipo , Regulación hacia Arriba/efectos de los fármacos
2.
Arch Pharm Res ; 36(12): 1419-31, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24222504

RESUMEN

The primary reason for the high mortality rate of breast cancer is metastasis, which can result in a poor survival rate. The tumor environment is important for promotion and invasion of cancer cells. Recent studies have shown that inflammation is associated with breast cancer. Therefore, it is important to investigate the role of the inflammatory and microenvironment in breast cancer progression and metastasis. The present review summarizes some of the markers for inflammation and breast cancer invasion, which may aid in the design of an appropriate therapy for metastatic breast cancer. The following four inflammatory markers are discussed in this review: (1) Tumor associated macrophages (TAMs); (2) Matrix metalloproteinases (MMPs); (3) Sphingosine 1-phosphate (S1P); (4) C-reactive protein (CRP). TAMs are commonly found in breast cancer patients, and high infiltration is positively correlated with poor prognosis and low survival rate. MMPs are well-known for their roles in the degradation of ECM components when cancer cells invade and migrate. MMPs are also associated with inflammation through recruitment of a variety of stromal cells such as fibroblasts and leukocytes. S1P is an inflammatory lipid and is involved in various cellular processes such as proliferation, survival, and migration. Recent studies indicate that S1P participates in breast cancer invasion in various ways. CRP is used clinically to indicate the outcome of cancer patients as well as acute inflammatory status. This review summarizes the current understanding on the role of S1P in CRP expression which promotes the breast epithelial cell invasion, suggesting a specific mechanism linking inflammation and breast cancer. The present review might be useful for understanding the relationship between inflammation and breast cancer for the development of pharmacological interventions that may control the primary molecules involved in the breast cancer microenvironment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Progresión de la Enfermedad , Mediadores de Inflamación/metabolismo , Microambiente Tumoral/fisiología , Animales , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...