Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Parasit Vectors ; 17(1): 429, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39402598

RESUMEN

BACKGROUND: Some settings continue to experience a high malaria burden despite scale-up of malaria vector control to high levels of coverage. Characterisation of persistent malaria transmission in the presence of standard control measures, also termed residual malaria transmission, to understand where and when individuals are exposed to vector biting is critical to inform refinement of prevention and control strategies. METHODS: Secondary analysis was performed using data collected during a phase III cluster randomized trial of attractive targeted sugar bait stations in Western Province, Zambia. Two seasonal cohorts of children aged 1-14 years were recruited and monitored monthly during the malaria transmission season, concurrent with entomological surveillance using a combination of human landing catch (HLC) and Centres for Disease Control (CDC) light traps at randomly selected households in study clusters. Behavioural data from cohort participants were combined with measured Anopheles funestus landing rates and sporozoite positivity to estimate the human behaviour-adjusted entomological inoculation rate (EIR). RESULTS: Behavioural data from 1237 children over 5456 child-visits in 20 entomology surveillance clusters were linked with hourly landing rates from 8131 female An. funestus trapped by HLC. Among all An. funestus tested by enzyme-linked immunosorbent assay (ELISA), 3.3% were sporozoite-positive. Mean EIR directly measured from HLC was 0.07 infectious bites per person per night (ib/p/n). When accounting for child locations over the evening and night, the mean behaviour-adjusted EIR was 0.02 ib/p/n. Children not sleeping under insecticide-treated nets (ITNs) experienced 13.6 infectious bites per person per 6 month season, 8% of which occurred outdoors, while ITN users received 1.3 infectious bites per person per 6 month season, 86% of which were received outdoors. Sleeping under an ITN can prevent approximately 90% of potential An. funestus bites among children. CONCLUSIONS: In this setting ITNs have a high personal protective efficacy owing to peak An. funestus biting occurring indoors while most individuals are asleep. However, despite high household possession of ITNs (>90%) and high individual use (>70%), children in this setting experience more than one infectious bite per person per 6 month transmission season, sufficient to maintain high malaria transmission and burden. New tools and strategies are required to reduce the malaria burden in such settings.


Asunto(s)
Anopheles , Malaria , Control de Mosquitos , Mosquitos Vectores , Animales , Zambia/epidemiología , Anopheles/fisiología , Anopheles/parasitología , Humanos , Preescolar , Niño , Mosquitos Vectores/fisiología , Mosquitos Vectores/parasitología , Malaria/transmisión , Malaria/prevención & control , Malaria/epidemiología , Femenino , Control de Mosquitos/métodos , Lactante , Adolescente , Masculino , Estaciones del Año , Mordeduras y Picaduras de Insectos/prevención & control , Mordeduras y Picaduras de Insectos/epidemiología
2.
Malar J ; 23(1): 263, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210405

RESUMEN

BACKGROUND: Attractive Targeted Sugar Baits (ATSBs) are a proposed new vector control tool for malaria that contain sugar and an ingestion toxicant, and are designed to attract and kill sugar-feeding mosquitoes. During a two-arm cluster randomized Phase III trial conducted in Zambia to test the efficacy of ATSB stations on malaria incidence, ATSB stations deployed on eligible household structures within intervention clusters were routinely monitored to ensure their good physical condition and high coverage. This study investigates trends in prevalence and rate of damage to ATSB stations during year 2 of the two-year trial. METHODS: The analysis was conducted using monitoring data collected in year 2, which included types of damage observed, location, and date of removal and/or replacement of ATSB stations. The study evaluated temporal trends in the prevalence of overall damage and different damage types among 68,299 ATSB stations deployed. A profile of all ATSB stations installed on each structure was constructed, and spatial analyses conducted on overall damage and different damage types observed on 18,890 structures. Mixed effects regression analyses were conducted to investigate drivers of damage to ATSB stations on these structures. RESULTS: Prevalence of overall damage and different damage types was temporally and spatially heterogeneous. Among damaged ATSB stations observed during monitoring, tears and mold had the highest prevalences on average, with tears maintaining above 50.0% prevalence through most of the monitoring period, while mold prevalence increased steadily during the first few months, peaking in February. Overall, 45.6% of structures had at least one damaged ATSB station, however this varied spatially across the trial site. Both structure characteristics and environmental factors significantly impacted the odds and rate of damage to ATSB stations on structures, including: ATSB stations' level of protection from rainfall and sunshine; roof and wall material of the structure; night-time temperature; rainfall; enhanced vegetation index, and land cover. CONCLUSION: Damage to ATSB stations in this setting was common and was temporally and spatially heterogeneous. This has implications on operational feasibility, sustainability, and cost of future deployment. Further research is required to understand the mechanisms of damage, and to minimize prevalence and rate of damage to ATSB stations.


Asunto(s)
Control de Mosquitos , Zambia/epidemiología , Control de Mosquitos/métodos , Control de Mosquitos/estadística & datos numéricos , Animales , Malaria/prevención & control , Malaria/epidemiología , Azúcares , Mosquitos Vectores/efectos de los fármacos , Anopheles/efectos de los fármacos , Humanos
3.
Malar J ; 23(1): 240, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129018

RESUMEN

BACKGROUND: Community acceptance is an important criterion to assess in community trials, particularly for new tools that require high coverage and use by a target population. Installed on exterior walls of household structures, the attractive targeted sugar bait (ATSB) is a new vector control tool designed to attract and kill mosquitoes. ATSBs were evaluated in Western Zambia during a two-year cluster randomized controlled trial to assess the efficacy of ATSBs in reducing malaria transmission. Community acceptance of ATSBs was critical for successful trial implementation. METHODS: A community engagement strategy outlined activities and key messages to promote acceptance. Annual cross-sectional surveys, conducted during the peak transmission period, assessed households for presence of ATSBs as well as perceived benefits, concerns, and willingness to use ATSBs. Sixteen focus group discussions and 16 in-depth interviews, conducted at the end of each ATSB station deployment period, obtained a range of perceptions and household experiences with ATSB stations, as well as ITN use in the context of ATSB deployment. RESULTS: Methods used during the study to promote acceptance and continued use of ATSBs were effective in achieving greater than 90% coverage, a high (greater than 70%) level of perceived benefits, and fewer than 10% of households reporting safety concerns. Common facilitators of acceptance included the desire for protection against malaria and reduction of mosquitoes, trust in health initiatives, and understanding of the product. Common barriers to acceptance included misconceptions of product impact on mosquitoes, continued cases of malaria, association with satanism, and damage to household structures. DISCUSSION: Future use of the ATSB intervention will likely require activities that foster community acceptance before, during, and after the intervention is introduced. Additional research may be needed to understand the impact of different levels of community engagement on ATSB station coverage, ATSB station perception, and ITN use. CONCLUSION: There was high acceptance of ATSB stations during the trial in Western Zambia. Continuous and intense community engagement efforts contributed to sustained ATSB coverage and trust in the product. Acceptance of ATSBs during programmatic delivery requires further research.


Asunto(s)
Malaria , Control de Mosquitos , Zambia , Control de Mosquitos/métodos , Humanos , Malaria/prevención & control , Estudios Transversales , Femenino , Masculino , Adulto , Animales , Persona de Mediana Edad , Azúcares/administración & dosificación , Adulto Joven , Insecticidas , Adolescente
4.
Malar J ; 23(1): 226, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090589

RESUMEN

BACKGROUND: Malaria community case management (CCM) can improve timely access to healthcare, and CCM programmes in sub-Saharan Africa are expanding from serving children under 5 years (CU5) only to all ages. This report characterizes malaria case management in the setting of an age-expanded CCM programme in Chadiza District, Zambia. METHODS: Thirty-three households in each of 73 eligible communities were randomly selected to participate in a household survey preceding a trial of proactive CCM (NCT04839900). All household members were asked about fever in the prior two weeks and received a malaria rapid diagnostic test (RDT); those reporting fever were asked about healthcare received. Weighted population estimates were calculated and mixed effects regression was used to assess factors associated with malaria care seeking. RESULTS: Among 11,030 (98.6%) participants with RDT results (2,357 households), parasite prevalence was 19.1% by RDT; school-aged children (SAC, 5-14 years) had the highest prevalence (28.8%). Prior fever was reported by 12.4% of CU5, 7.5% of SAC, and 7.2% of individuals ≥ 15 years. Among those with prior fever, 34.0% of CU5, 56.0% of SAC, and 22.6% of individuals ≥ 15 years had a positive survey RDT and 73.7% of CU5, 66.5% of SAC, and 56.3% of individuals ≥ 15 years reported seeking treatment; 76.7% across all ages visited a CHW as part of care. Nearly 90% (87.8%) of people who visited a CHW reported a blood test compared with 73.5% seen only at a health facility and/or pharmacy (p < 0.001). Reported malaria treatment was similar by provider, and 85.9% of those with a reported positive malaria test reported getting malaria treatment; 66.9% of the subset with prior fever and a positive survey RDT reported malaria treatment. Age under 5 years, monthly or more frequent CHW home visits, and greater wealth were associated with increased odds of receiving healthcare. CONCLUSIONS: Chadiza District had high CHW coverage among individuals who sought care for fever. Further interventions are needed to increase the proportion of febrile individuals who receive healthcare. Strategies to decrease barriers to healthcare, such as CHW home visits, particularly targeting those of all ages in lower wealth strata, could maximize the benefits of CHW programmes.


Asunto(s)
Manejo de Caso , Malaria Falciparum , Zambia/epidemiología , Humanos , Preescolar , Adolescente , Niño , Masculino , Lactante , Femenino , Manejo de Caso/estadística & datos numéricos , Malaria Falciparum/epidemiología , Adulto , Adulto Joven , Persona de Mediana Edad , Recién Nacido , Anciano , Prevalencia , Calidad de la Atención de Salud/estadística & datos numéricos , Pruebas Diagnósticas de Rutina/estadística & datos numéricos
5.
medRxiv ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39148823

RESUMEN

The emergence of antimalarial drug resistance is a major threat to malaria control and elimination. Using whole genome sequencing of 282 P. falciparum samples collected during the 2018 Zambia National Malaria Indicator Survey, we determined the prevalence and spatial distribution of known and candidate antimalarial drug resistance mutations. High levels of genotypic resistance were found across Zambia to pyrimethamine, with over 94% (n=266) of samples having the Pfdhfr triple mutant (N51I, C59R, and S108N), and sulfadoxine, with over 84% (n=238) having the Pfdhps double mutant (A437G and K540E). In northern Zambia, 5.3% (n=15) of samples also harbored the Pfdhps A581G mutation. Although 29 mutations were identified in Pfkelch13, these mutations were present at low frequency (<2.5%), and only three were WHO-validated artemisinin partial resistance mutations: P441L (n=1, 0.35%), V568M (n=2, 0.7%) and R622T (n=1, 0.35%). Notably, 91 (32%) of samples carried the E431K mutation in the Pfatpase6 gene, which is associated with artemisinin resistance. No specimens carried any known mutations associated with chloroquine resistance in the Pfcrt gene (codons 72-76). P. falciparum strains circulating in Zambia were highly resistant to sulfadoxine and pyrimethamine but remained susceptible to chloroquine and artemisinin. Despite this encouraging finding, early genetic signs of developing artemisinin resistance highlight the urgent need for continued vigilance and expanded routine genomic surveillance to monitor these changes.

6.
Malar J ; 23(1): 204, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982496

RESUMEN

BACKGROUND: Attractive Targeted Sugar Baits (ATSBs) offer a complementary vector control strategy to interventions targeting blood feeding or larval control by attacking the sugar feeding behaviour of adult mosquitoes using an attract-and-kill approach. Western Zambia was the first location to receive and deploy ATSB Sarabi version 1.2 stations in a Phase III cluster randomized controlled trial. This paper describes ATSB station installation, monitoring, removal, and disposal, quantifies ATSB station coverage, and reports major reasons for ATSB station replacement. METHODS: ATSB stations were deployed during two annual transmission seasons, through scheduled installation and removal campaigns. During deployment, monitoring was conducted per protocol to maintain high coverage of the ATSB stations in good condition. Routine monitoring visits during the trial captured details on ATSB station damage necessitating replacement following pre-defined replacement criteria. Annual cross-sectional household surveys measured ATSB station coverage during peak malaria transmission. RESULTS: A total of 67,945 ATSB stations were installed in Year 1 (41,695 initially installed+ 26,250 installed during monitoring) and 69,494 ATSB stations were installed in Year 2 (41,982 initially installed+ 27,512 installed during monitoring) across 35 intervention clusters to maintain high coverage of two ATSB stations in good condition per eligible household structure. The primary reasons for ATSB station replacement due to damage were holes/tears and presence of mold. Cross-sectional household surveys documented high coverage of ATSB stations across Year 1 and Year 2 with 93.1% of eligible structures having ≥ 2 ATSB stations in any condition. DISCUSSION: ATSB station deployment and monitoring efforts were conducted in the context of a controlled cRCT to assess potential product efficacy. Damage to ATSB stations during deployment required replacement of a subset of stations. High coverage of eligible structures was maintained over the two-year study despite replacement requirements. Additional research is needed to better understand the impact of damage on ATSB station effectiveness under programmatic conditions, including thresholds of threats to physical integrity and biological deterioration on product efficacy. CONCLUSIONS: Optimizing ATSB stations to address causes of damage and conducting implementation research to inform optimal delivery and cost-effective deployment will be important to facilitate scale-up of ATSB interventions.


Asunto(s)
Control de Mosquitos , Zambia , Control de Mosquitos/métodos , Humanos , Animales , Femenino , Malaria/prevención & control , Azúcares , Estudios Transversales , Mosquitos Vectores/fisiología , Anopheles/fisiología , Masculino
7.
Malar J ; 23(1): 214, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026236

RESUMEN

BACKGROUND: Attractive targeted sugar bait (ATSB) stations are a novel tool with potential to complement current approaches to malaria vector control. To assess the public health value of ATSB station deployment in areas of high coverage with standard vector control, a two-arm cluster-randomized controlled trial (cRCT) of Sarabi ATSB® stations (Westham Ltd., Hod-Hasharon, Israel) was conducted in Western Province, Zambia, a high-burden location were Anopheles funestus is the dominant vector. The trial included 70 clusters and was designed to measure the effect of ATSBs on case incidence and infection prevalence over two 7-month deployments. Reported here are results of the vector surveillance component of the study, conducted in a subset of 20 clusters and designed to provide entomological context to guide overall interpretation of trial findings. METHODS: Each month, 200 paired indoor-outdoor human landing catch (HLC) and 200 paired light trap (LT) collections were conducted to monitor An. funestus parity, abundance, biting rates, sporozoite prevalence, and entomological inoculation rates (EIR). RESULTS: During the study 20,337 female An. funestus were collected, 11,229 from control and 9,108 from intervention clusters. A subset of 3,131 HLC specimens were assessed for parity: The mean non-parous proportion was 23.0% (95% CI 18.2-28.7%, total n = 1477) in the control and 21.2% (95% CI 18.8-23.9%, total n = 1654) in the intervention arm, an OR = 1.05 (95% CI 0.82-1.34; p = 0.688). A non-significant reduction in LT abundance (RR = 0.65 [95% CI 0.30-1.40, p = 0.267]) was associated with ATSB deployment. HLC rates were highly variable, but model results indicate a similar non-significant trend with a RR = 0.68 (95%CI 0.22-2.00; p = 0.479). There were no effects on sporozoite prevalence or EIR. CONCLUSIONS: Anopheles funestus parity did not differ across study arms, but ATSB deployment was associated with a non-significant 35% reduction in vector LT density, results that are consistent with the epidemiological impact reported elsewhere. Additional research is needed to better understand how to maximize the potential impact of ATSB approaches in Zambia and other contexts. TRIAL REGISTRATION NUMBER: This trial was registered with Clinicaltrials.gov (NCT04800055, 16 March 2021).


Asunto(s)
Anopheles , Control de Mosquitos , Mosquitos Vectores , Zambia , Anopheles/fisiología , Animales , Mosquitos Vectores/fisiología , Control de Mosquitos/métodos , Femenino , Humanos , Azúcares , Malaria/prevención & control
8.
Parasit Vectors ; 17(1): 274, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937791

RESUMEN

BACKGROUND: Indoor residual spraying (IRS) has been implemented to prevent malaria in Zambia for several decades, but its effectiveness has not been evaluated long term and in Vubwi District yet. This study aimed to assess the association between IRS and the malaria burden in Zambia and Vubwi District and to explore the factors associated with refusing IRS. METHODS: A retrospective study was used to analyze the association between IRS and malaria incidence in Zambia in 2001-2020 and in Vubwi District in 2014-2020 by Spearman correlation analysis. A case-control study was used to explore the factors associated with IRS refusals by households in Vubwi District in 2021. A logistic regression model was performed to identify factors associated with IRS refusals. RESULTS: The malaria incidence reached its peak (391/1000) in 2001 and dropped to the lowest (154/1000) in 2019. The annual percentage change in 2001-2003, 2003-2008, 2008-2014, 2014-2018 and 2018-2020 was - 6.54%, - 13.24%, 5.04%, - 10.28% and 18.61%, respectively. A significantly negative correlation between the percentage of population protected by the IRS against the total population in Zambia (coverage) and the average malaria incidence in the whole population was observed in 2005-2020 (r = - 0.685, P = 0.003) and 2005-2019 (r = - 0.818, P < 0.001). Among 264 participants (59 in the refuser group and 205 in the acceptor group), participants with specific occupations (self-employed: OR 0.089, 95% CI 0.022-0.364; gold panning: OR 0.113, 95% CI 0.022-0.574; housewives: OR 0.129, 95% CI 0.026-0.628 and farmers: OR 0.135, 95% CI 0.030-0.608 compared to employees) and no malaria case among household members (OR 0.167; 95% CI 0.071-0.394) had a lower risk of refusing IRS implementation, while those with a secondary education level (OR 3.690, 95% CI 1.245-10.989) had a higher risk of refusing IRS implementation compared to those who had never been to school. CONCLUSIONS: Increasing coverage with IRS was associated with decreasing incidence of malaria in Zambia, though this was not observed in Vubwi District, possibly because of the special geographical location of Vubwi District. Interpersonal communication and targeted health education should be implemented at full scale to ensure household awareness and gain community trust.


Asunto(s)
Insecticidas , Malaria , Control de Mosquitos , Zambia/epidemiología , Humanos , Estudios de Casos y Controles , Malaria/epidemiología , Malaria/prevención & control , Malaria/transmisión , Control de Mosquitos/métodos , Incidencia , Estudios Retrospectivos , Insecticidas/administración & dosificación , Femenino , Masculino , Animales , Adulto , Preescolar , Niño , Adolescente
9.
Malar J ; 23(1): 153, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762448

RESUMEN

BACKGROUND: The attractive targeted sugar bait (ATSB) is a novel malaria vector control tool designed to attract and kill mosquitoes using a sugar-based bait, laced with oral toxicant. Western Province, Zambia, was one of three countries selected for a series of phase III cluster randomized controlled trials of the Westham ATSB Sarabi version 1.2. The trial sites in Kenya, Mali, and Zambia were selected to represent a range of different ecologies and malaria transmission settings across sub-Saharan Africa. This case study describes the key characteristics of the ATSB Zambia trial site to allow for interpretation of the results relative to the Kenya and Mali sites. METHODS: This study site characterization incorporates data from the trial baseline epidemiological and mosquito sugar feeding surveys conducted in 2021, as well as relevant literature on the study area. RESULTS: CHARACTERIZATION OF THE TRIAL SITE: The trial site in Zambia was comprised of 70 trial-designed clusters in Kaoma, Nkeyema, and Luampa districts. Population settlements in the trial site were dispersed across a large geographic area with sparsely populated villages. The overall population density in the 70 study clusters was 65.7 people per square kilometre with a total site population of 122,023 people living in a geographic area that covered 1858 square kilometres. However, the study clusters were distributed over a total area of approximately 11,728 square kilometres. The region was tropical with intense and seasonal malaria transmission. An abundance of trees and other plants in the trial site were potential sources of sugar meals for malaria vectors. Fourteen Anopheles species were endemic in the site and Anopheles funestus was the dominant vector, likely accounting for around 95% of all Plasmodium falciparum malaria infections. Despite high coverage of indoor residual spraying and insecticide-treated nets, the baseline malaria prevalence during the peak malaria transmission season was 50% among people ages six months and older. CONCLUSION: Malaria transmission remains high in Western Province, Zambia, despite coverage with vector control tools. New strategies are needed to address the drivers of malaria transmission in this region and other malaria-endemic areas in sub-Saharan Africa.


Asunto(s)
Anopheles , Malaria , Control de Mosquitos , Mosquitos Vectores , Azúcares , Zambia , Control de Mosquitos/métodos , Control de Mosquitos/estadística & datos numéricos , Mosquitos Vectores/efectos de los fármacos , Animales , Anopheles/efectos de los fármacos , Anopheles/fisiología , Humanos , Malaria/prevención & control , Malaria/transmisión , Femenino , Insecticidas/farmacología
10.
Malar J ; 23(1): 169, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811947

RESUMEN

BACKGROUND: The primary vector control interventions in Zambia are long-lasting insecticidal nets and indoor residual spraying. Challenges with these interventions include insecticide resistance and the outdoor biting and resting behaviours of many Anopheles mosquitoes. Therefore, new vector control tools targeting additional mosquito behaviours are needed to interrupt transmission. Attractive targeted sugar bait (ATSB) stations, which exploit the sugar feeding behaviours of mosquitoes, may help in this role. This study evaluated the residual laboratory bioefficacy of Westham prototype ATSB® Sarabi v.1.2.1 Bait Station (Westham Ltd., Hod-Hasharon, Israel) in killing malaria vectors in Western Province, Zambia, during the first year of a large cluster randomized phase-III trial (Clinical Trials.gov Identifier: NCT04800055). METHODS: This was a repeat cross-sectional study conducted within three districts, Nkeyema, Kaoma, and Luampa, in Western Province, Zambia. The study was conducted in 12 intervention clusters among the 70 trial clusters (35 interventions, 35 controls) between December 2021 and June 2022. Twelve undamaged bait stations installed on the outer walls of households were collected monthly (one per cluster per month) for bioassays utilizing adult female and male Anopheles gambiae sensu stricto (Kisumu strain) mosquitoes from a laboratory colony. RESULTS: A total of 84 field-deployed ATSB stations were collected, and 71 ultimately met the study inclusion criteria for remaining in good condition. Field-deployed stations that remained in good condition (intact, non-depleted of bait, and free of dirt as well as mold) retained high levels of bioefficacy (mean induced mortality of 95.3% in males, 71.3% in females, 83.9% combined total) over seven months in the field but did induce lower mortality rates than non-deployed ATSB stations (mean induced mortality of 96.4% in males, 87.0% in females, 91.4% combined total). There was relatively little variation in corrected mortality rates between monthly rounds for those ATSB stations that had been deployed to the field. CONCLUSION: While field-deployed ATSB stations induced lower mortality rates than non-deployed ATSB stations, these stations nonetheless retained relatively high and stable levels of bioefficacy across the 7-month malaria transmission season. While overall mean mosquito mortality rates exceeded 80%, mean mortality rates for females were 24 percentage points lower than among males and these differences merit attention and further evaluation in future studies. The duration of deployment was not associated with lower bioefficacy. Westham prototype ATSB stations can still retain bioefficacy even after deployment in the field for 7 months, provided they do not meet predetermined criteria for replacement.


Asunto(s)
Anopheles , Control de Mosquitos , Mosquitos Vectores , Zambia , Animales , Control de Mosquitos/métodos , Anopheles/efectos de los fármacos , Anopheles/fisiología , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/fisiología , Femenino , Masculino , Estudios Transversales , Malaria/prevención & control , Malaria/transmisión , Estaciones del Año , Insecticidas/farmacología , Azúcares , Humanos , Conducta Alimentaria
11.
Malar J ; 23(1): 85, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519929

RESUMEN

BACKGROUND: The burden of Malaria in Zambia remains a challenge, with the entire population at risk of contracting this infectious disease. Despite concerted efforts by African countries, including Zambia, to implement malaria policies and strategies aimed at reducing case incidence, the region faces significant hurdles, especially with emerging pandemics such as COVID-19. The efforts to control malaria were impacted by the constraints imposed to curb its transmission during the COVID-19 pandemic. The aim of the study was to assess the effect of the COVID-19 pandemic on malaria cases in Zambia and the factors associated by comparing the COVID-19 period and the pre-COVID-19 era. METHODS: This was a cross-sectional panel study in which routinely collected programmatic data on malaria was used. The data were extracted from the Health Management Information System (HMIS) for the period January 2018 to January 2022. The period 2018 to 2022 was selected purely due to the availability of data and to avoid the problem of extrapolating too far away from the period of interest of the study. A summary of descriptive statistics was performed in which the number of cases were stratified by province, age group, and malaria cases. The association of these variables with the COVID-19 era was checked using the Wilcoxon rank-sum test and Kruskal‒Wallis test as applicable. In establishing the factors associated with the number of malaria cases, a mixed-effect multilevel model using the Poisson random intercept and random slope of the COVID-19 panel. The model was employed to deal with the possible correlation of the number of cases in the non-COVID-19 panel and the expected correlation of the number of cases in the COVID-19 panel. RESULTS: A total of 18,216 records were extracted from HMIS from January 2018 to January 2022. Stratifying this by the COVID-19 period/era, it was established that 8,852 malaria cases were recorded in the non-COVID-19 period, whereas 9,364 cases were recorded in the COVID-19 era. Most of the people with malaria were above the age of 15 years. Furthermore, the study found a significant increase in the relative incidence of the COVID-19 panel period compared to the non-COVID-19 panel period of 1.32, 95% CI (1.18, 1.48, p < 0.0001). The observed numbers, as well as the incident rate ratio, align with the hypothesis of this study, indicating an elevated incidence rate ratio of malaria during the COVID-19 period. CONCLUSION: This study found that there was an increase in confirmed malaria cases during the COVID-19 period compared to the non-COVID-19 period. The study also found Age, Province, and COVID-19 period to be significantly associated with malaria cases.


Asunto(s)
COVID-19 , Malaria , Humanos , Adolescente , Zambia/epidemiología , COVID-19/epidemiología , Estudios Transversales , Pandemias , Análisis Multinivel , Malaria/prevención & control
12.
Nat Commun ; 15(1): 1413, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360754

RESUMEN

Genomic surveillance of Plasmodium falciparum malaria can provide policy-relevant information about antimalarial drug resistance, diagnostic test failure, and the evolution of vaccine targets. Yet the large and low complexity genome of P. falciparum complicates the development of genomic methods, while resource constraints in malaria endemic regions can limit their deployment. Here, we demonstrate an approach for targeted nanopore sequencing of P. falciparum from dried blood spots (DBS) that enables cost-effective genomic surveillance of malaria in low-resource settings. We release software that facilitates flexible design of amplicon sequencing panels and use this software to design two target panels for P. falciparum. The panels generate 3-4 kbp reads for eight and sixteen targets respectively, covering key drug-resistance associated genes, diagnostic test antigens, polymorphic markers and the vaccine target csp. We validate our approach on mock and field samples, demonstrating robust sequencing coverage, accurate variant calls within coding sequences, the ability to explore P. falciparum within-sample diversity and to detect deletions underlying rapid diagnostic test failure.


Asunto(s)
Malaria Falciparum , Malaria , Secuenciación de Nanoporos , Vacunas , Humanos , Plasmodium falciparum/genética , Análisis Costo-Beneficio , Malaria Falciparum/diagnóstico , Malaria/epidemiología , Genómica
13.
Trop Med Infect Dis ; 9(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38251217

RESUMEN

This study evaluated the impact of combining house screens with long-lasting insecticidal nets (LLINs) on mosquito host-seeking, resting, and biting behavior. Intervention houses received house screens and LLINs, while control houses received only LLINs. Centre for Disease Control light traps, pyrethrum spray collections and human landing catches were used to assess the densities of indoor and outdoor host-seeking, indoor resting, and biting behavior of malaria vectors in 15 sentinel houses per study arm per sampling method. The protective efficacy of screens and LLINs was estimated through entomological inoculation rates (EIRs). There were 68% fewer indoor host-seeking Anopheles funestus (RR = 0.32, 95% CI 0.20-0.51, p < 0.05) and 63% fewer An. arabiensis (RR = 0.37, 95% CI 0.22-0.61, p < 0.05) in screened houses than unscreened houses. There was a significantly higher indoor biting rate for unscreened houses (6.75 bites/person/h [b/p/h]) than for screened houses (0 b/p/h) (χ2 = 6.67, df = 1, p < 0.05). The estimated indoor EIR in unscreened houses was 2.91 infectious bites/person/six months, higher than that in screened houses (1.88 infectious bites/person/six months). Closing eaves and screening doors and windows has the potential to reduce indoor densities of malaria vectors and malaria transmission.

14.
BMC Public Health ; 24(1): 285, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267927

RESUMEN

BACKGROUND: House screening remains conspicuously absent in national malaria programs despite its recognition by the World Health Organization as a supplementary malaria vector-control intervention. This may be attributed, in part, to the knowledge gap in screen durability or longevity in local climatic conditions and community acceptance under specific cultural practices and socio-economic contexts. The objectives of this study were to assess the durability of window and door wire mesh screens a year after full house screening and to assess the acceptability of the house screening intervention to the participants involved. METHODS: This study was conducted in Nyimba district, Zambia and used both quantitative and qualitative methods of data collection and analysis. Both direct observation and questionnaires were employed to assess the durability of the screens and the main reasons for damage. Findings on damage were summarized as percentages. Focus group discussions were used to assess people's knowledge, perceptions, and acceptability of the closing eaves and house screening intervention. Deductive coding and inductive coding were used to analyse the qualitative data. RESULTS: A total of 321 out of 400 (80.3%) household owners of screened houses were interviewed. Many window screens (90.3%) were intact. In sharp contrast, most door screens were torn (n = 150; 46.7%) or entirely removed (n = 55; 17.1%). Most doors (n = 114; 76%) had their wire mesh damaged or removed on the bottom half. Goats (25.4%), rust (17.6%) and children (17.1%) were cited most as the cause of damage to door screens. The focus group discussion elicited positive experiences from the participants following the closing of eaves and screening of their windows and doors, ranging from sleeping peacefully due to reduced mosquito biting and/or nuisance and having fewer insects in the house. Participants linked house screening to reduced malaria in their households and community. CONCLUSION: This study demonstrated that in rural south-east Zambia, closing eaves and screening windows and doors was widely accepted. Participants perceived that house screening reduced human-vector contact, reduced the malaria burden and nuisance biting from other potentially disease carrying insects. However, screened doors are prone to damage, mainly by children, domestic animals, rust, and termites.


Asunto(s)
Anopheles , Eccema , Malaria , Animales , Niño , Humanos , Malaria/prevención & control , Mosquitos Vectores , Zambia/epidemiología , Exactitud de los Datos
15.
Malar J ; 22(1): 365, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037072

RESUMEN

BACKGROUND: In 2020, the Zambia National Malaria Elimination Centre targeted the distribution of long-lasting insecticidal nets (LLINs) and indoor-residual spraying (IRS) campaigns based on sub-district micro-planning, where specified geographical areas at the health facility catchment level were assigned to receive either LLINs or IRS. Using data from the 2021 Malaria Indicator Survey (MIS), the objectives of this analysis were to (1) assess how well the micro-planning was followed in distributing LLINs and IRS, (2) investigate factors that contributed to whether households received what was planned, and (3) investigate how overall coverage observed in the 2021 MIS compared to the 2018 MIS conducted prior to micro-planning. METHODS: Households' receipt of ≥ 1 LLIN, and/or IRS within the past 12 months in the 2021 MIS, was compared against the micro-planning area under which the households fell. GPS points for 3,550 households were overlayed onto digitized micro-planning maps in order to determine what micro-plan the households fell under, and thus whether they received their planned intervention. Mixed-effects regression models were conducted to investigate what factors affected whether these households: (1) received their planned intervention, and (2) received any intervention. Finally, coverage indicators between the 2021 and 2018 MIS were compared. RESULTS: Overall, 60.0% (95%CI 55.4, 64.4) of households under a micro-plan received their assigned intervention, with significantly higher coverage of the planned intervention in LLIN-assigned areas (75.7% [95%CI 69.5, 80.9]) compared to IRS-assigned areas (49.4% [95%CI: 44.4, 54.4]). Regression analysis indicated that households falling under the IRS micro-plan had significantly reduced odds of receiving their planned intervention (OR: 0.34 [95%CI 0.24, 0.48]), and significantly reduced odds of receiving any intervention (OR: 0.51 [95%CI 0.37, 0.72] ), compared to households under the LLIN micro-plan. Comparison between the 2021 and 2018 MIS indicated a 27% reduction in LLIN coverage nationally in 2021, while IRS coverage was similar. Additionally, between 2018 and 2021, there was a 13% increase in households that received neither intervention. CONCLUSIONS: This analysis shows that although the micro-planning strategy adopted in 2020 worked much better for LLIN-assigned areas compared to IRS-assigned areas, there was reduced overall vector control coverage in 2021 compared to 2018 before micro-planning.


Asunto(s)
Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Humanos , Control de Mosquitos , Zambia/epidemiología , Malaria/prevención & control
16.
Malar J ; 22(1): 318, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864245

RESUMEN

BACKGROUND: The importation of parasites across borders remains a threat to malaria elimination. The Southern African Development Community Malaria Elimination Eight (E8) established 39 border health facilities on 5 key international borders between high and low-burden countries. These clinics aimed to improve access to prevention, diagnosis, and treatment of malaria for residents in border areas and for mobile and migrant populations who frequently cross borders. Studies were conducted in each of the four high-burden E8 countries (Angola, Mozambique, Zambia, and Zimbabwe) to evaluate malaria services in border areas. METHODS: Cross-sectional surveys were conducted within 30 km of recently established E8 Border Health Posts. Structured questionnaires were administered to randomly selected respondents to assess malaria-related knowledge and behavior, access to malaria prevention, diagnosis and treatment of malaria, and risk factors for malaria associated with local and cross-border travel. RESULTS: Results showed that most providers followed appropriate guidelines performing blood tests when individuals presented with fever, and that nearly all those who reported a positive blood test received medication. Lack of access to health care due to distance, cost or mistrust of the provider was rare. A minority of respondents reported not receiving timely diagnosis either because they did not seek help, or because they were not offered a blood test when presenting with fever. There was a high level of correct knowledge of causes, symptoms, and prevention of malaria. A majority, of border residents had access to primary prevention against malaria through either long-lasting insecticidal nets (LLINs) or indoor residual spraying (IRS). Cross border travel was common with travellers reporting sleeping outside without protection against malaria. CONCLUSIONS: The study demonstrated the importance of border health facilities in providing access to malaria services. Prevention needs to be improved for people who travel and sleep outdoors. Community health workers can play a key role in providing access to information, testing and treating malaria.


Asunto(s)
Malaria , Humanos , Estudios Transversales , Malaria/prevención & control , Factores de Riesgo , África Austral , Encuestas y Cuestionarios
17.
BMJ Open ; 13(5): e073287, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37236665

RESUMEN

OBJECTIVE: To determine the prevalence and predictors of the uptake of four or more doses of sulfadoxine pyrimethamine (IPTp-SP 4+) in Zambia. DESIGN: A cross-sectional study using secondary data from the malaria in pregnancy survey (Malaria Indicator Survey) data set conducted from April to May 2018. SETTING: The primary survey was conducted at community level and covered all the 10 provinces of Zambia. PARTICIPANTS: A total of 3686 women of reproductive age (15-45 years) who gave birth within the 5 years before the survey. PRIMARY OUTCOME: Proportion of participants with four or more doses of IPTp-SP. STATISTICAL ANALYSIS: All analyses were conducted using RStudio statistical software V.4.2.1. Descriptive statistics were computed to summarise participant characteristics and IPTp-SP uptake. Univariate logistic regression was carried out to determine association between the explanatory and outcome variables. Explanatory variables with a p value less than 0.20 on univariate analysis were included in the multivariable logistic regression model and crude and adjusted ORs (aORs) along with their 95% CIs were computed (p<0.05). RESULTS: Of the total sample of 1163, only 7.5% of participants received IPTp-SP 4+. Province of residence and wealth tertile were associated with uptake of IPTp-SP doses; participants from Luapula (aOR=8.72, 95% CI (1.72 to 44.26, p=0.009)) and Muchinga (aOR=6.67, 95% CI (1.19 to 37.47, p=0.031)) provinces were more likely to receive IPTp-SP 4+ compared with to those from Copperbelt province. Conversely, women in the highest wealth tertile were less likely to receive IPTp-SP 4+ doses compared with those in the lowest quintile (aOR=0.32; 95% CI (0.13 to 0.79, p=0.014)). CONCLUSION: These findings confirm a low uptake of four or more doses of IPTp-SP in the country. Strategies should focus on increased coverage of IPTp-SP in provinces with much higher malaria burden where the risk is greatest and the ability to afford healthcare lowest.


Asunto(s)
Antimaláricos , Malaria , Complicaciones Parasitarias del Embarazo , Embarazo , Femenino , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Pirimetamina/uso terapéutico , Sulfadoxina/uso terapéutico , Antimaláricos/uso terapéutico , Zambia/epidemiología , Estudios Transversales , Complicaciones Parasitarias del Embarazo/prevención & control , Complicaciones Parasitarias del Embarazo/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control , Malaria/tratamiento farmacológico , Encuestas y Cuestionarios , Combinación de Medicamentos
18.
Malar J ; 22(1): 95, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927373

RESUMEN

BACKGROUND: The primary malaria vector-control interventions, indoor residual spraying and long-lasting insecticidal nets, are effective against indoor biting and resting mosquito species. Consequently, outdoor biting and resting malaria vectors might elude the primary interventions and sustain malaria transmission. Varied vector biting and resting behaviour calls for robust entomological surveillance. This study investigated the bionomics of malaria vectors in rural south-east Zambia, focusing on species composition, their resting and host-seeking behaviour and sporozoite infection rates. METHODS: The study was conducted in Nyimba District, Zambia. Randomly selected households served as sentinel houses for monthly collection of mosquitoes indoors using CDC-light traps (CDC-LTs) and pyrethrum spray catches (PSC), and outdoors using only CDC-LTs for 12 months. Mosquitoes were identified using morphological taxonomic keys. Specimens belonging to the Anopheles gambiae complex and Anopheles funestus group were further identified using molecular techniques. Plasmodium falciparum sporozoite infection was determined using sandwich enzyme-linked immunosorbent assays. RESULTS: From 304 indoor and 257 outdoor light trap-nights and 420 resting collection, 1409 female Anopheles species mosquitoes were collected and identified morphologically; An. funestus (n = 613; 43.5%), An. gambiae sensu lato (s.l.)(n = 293; 20.8%), Anopheles pretoriensis (n = 282; 20.0%), Anopheles maculipalpis (n = 130; 9.2%), Anopheles rufipes (n = 55; 3.9%), Anopheles coustani s.l. (n = 33; 2.3%), and Anopheles squamosus (n = 3, 0.2%). Anopheles funestus sensu stricto (s.s.) (n = 144; 91.1%) and Anopheles arabiensis (n = 77; 77.0%) were the dominant species within the An. funestus group and An. gambiae complex, respectively. Overall, outdoor CDC-LTs captured more Anopheles mosquitoes (mean = 2.25, 95% CI 1.22-3,28) than indoor CDC-LTs (mean = 2.13, 95% CI 1.54-2.73). Fewer resting mosquitoes were collected with PSC (mean = 0.44, 95% CI 0.24-0.63). Sporozoite infectivity rates for An. funestus, An. arabiensis and An. rufipes were 2.5%, 0.57% and 9.1%, respectively. Indoor entomological inoculation rates (EIRs) for An. funestus s.s, An. arabiensis and An. rufipes were estimated at 4.44, 1.15 and 1.20 infectious bites/person/year respectively. Outdoor EIRs for An. funestus s.s. and An. rufipes at 7.19 and 4.31 infectious bites/person/year, respectively. CONCLUSION: The findings of this study suggest that An. rufipes may play an important role in malaria transmission alongside An. funestus s.s. and An. arabiensis in the study location.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria , Piretrinas , Animales , Humanos , Femenino , Zambia , Mosquitos Vectores , Conducta Alimentaria , Malaria Falciparum/epidemiología , Esporozoítos
19.
Malar J ; 22(1): 96, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36927440

RESUMEN

BACKGROUND: Community case management of malaria (CCM) has been expanded in many settings, but there are limited data describing the impact of these services in routine implementation settings or at large scale. Zambia has intensively expanded CCM since 2013, whereby trained volunteer community health workers (CHW) use rapid diagnostic tests and artemether-lumefantrine to diagnose and treat uncomplicated malaria. METHODS: This retrospective, observational study explored associations between changing malaria service point (health facility or CHW) density per 1000 people and severe malaria admissions or malaria inpatient deaths by district and month in a dose-response approach, using existing routine and programmatic data. Negative binomial generalized linear mixed-effect models were used to assess the impact of increasing one additional malaria service point per 1000 population, and of achieving Zambia's interim target of 1 service point per 750 population. Access to insecticide-treated nets, indoor-residual spraying, and rainfall anomaly were included in models to reduce potential confounding. RESULTS: The study captured 310,855 malaria admissions and 7158 inpatient malaria deaths over 83 districts (seven provinces) from January 2015 to May 2020. Total CHWs increased from 43 to 4503 during the study period, while health facilities increased from 1263 to 1765. After accounting for covariates, an increase of one malaria service point per 1000 was associated with a 19% reduction in severe malaria admissions among children under five (incidence rate ratio [IRR] 0.81, 95% confidence interval [CI] 0.75-0.87, p < 0.001) and 23% reduction in malaria deaths among under-fives (IRR 0.77, 95% CI 0.66-0.91). After categorizing the exposure of population per malaria service point, there was evidence for an effect on malaria admissions and inpatient malaria deaths among children under five only when reaching the target of one malaria service point per 750 population. CONCLUSIONS: CCM is an effective strategy for preventing severe malaria and deaths in areas such as Zambia where malaria diagnosis and treatment access remains challenging. These results support the continued investment in CCM scale-up in similar settings, to improve access to malaria diagnosis and treatment.


Asunto(s)
Antimaláricos , Sistemas de Información en Salud , Malaria , Niño , Humanos , Antimaláricos/uso terapéutico , Zambia/epidemiología , Manejo de Caso , Estudios Retrospectivos , Pacientes Internos , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/prevención & control , Malaria/epidemiología , Agentes Comunitarios de Salud
20.
Am J Trop Med Hyg ; 108(2_Suppl): 8-13, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35895588

RESUMEN

New tools are needed for malaria control, and recent improvements in malaria surveillance have opened the possibility of transforming surveillance into a core intervention. Implementing this strategy can be challenging in moderate to high transmission settings. However, there is a wealth of practical experience among national malaria control programs and partners working to improve and use malaria surveillance data to guide programming. Granular and timely data are critical to understanding geographic heterogeneity, appropriately defining and targeting interventions packages, and enabling timely decision-making at the operational level. Resources to be targeted based on surveillance data include vector control, case management commodities, outbreak responses, quality improvement interventions, and human resources, including community health workers, as they contribute to a more refined granularity of the surveillance system. Effectively transforming malaria surveillance into a core intervention will require strong global and national leadership, empowerment of subnational and local leaders, collaboration among development partners, and global coordination. Ensuring that national health systems include community health work can contribute to a successful transformation. It will require a strong supply chain to ensure that all suspected cases can be diagnosed and data reporting tools including appropriate electronic devices to provide timely data. Regular data quality audits, decentralized implementation, supportive supervision, data-informed decision-making processes, and harnessing technology for data analysis and visualization are needed to improve the capacity for data-driven decision-making at all levels. Finally, resources must be available to respond programmatically to these decisions.


Asunto(s)
Malaria , Humanos , Malaria/epidemiología , Malaria/prevención & control , Salud Pública , Exactitud de los Datos , Brotes de Enfermedades , Mejoramiento de la Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...