Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612379

RESUMEN

Glycosylation plays a crucial role in the maintenance of homeostasis in the body and at the onset of diseases such as inflammation, neurodegeneration, infection, diabetes, and cancer. It is also involved in bone metabolism. N- and O-glycans have been shown to regulate osteoblast and osteoclast differentiation. We recently demonstrated that ganglio-series and globo-series glycosphingolipids were essential for regulating the proliferation and differentiation of osteoblasts and osteoclasts in glycosyltransferase-knockout mice. Herein, we reviewed the importance of the regulation of bone metabolism by glycoconjugates, such as glycolipids and glycoproteins, including our recent results.


Asunto(s)
Glucolípidos , Glicosiltransferasas , Animales , Ratones , Glicosilación , Homeostasis , Inflamación , Ratones Noqueados
2.
J Oral Biosci ; 66(1): 41-48, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37939880

RESUMEN

OBJECTIVES: Globo-series Gb4 (globoside) is involved in the immune system and disease pathogenesis. We recently reported that systemic Gb4 deficiency in mice led to decreased bone formation due to a reduction in osteoblast number. However, it remains unclear whether Gb4 expressed in osteoblasts promotes their proliferation. Therefore, we investigated the role of Gb4 in osteoblast proliferation in vitro. METHODS: We examined osteoblast proliferation in Gb3 synthase knockout mice lacking Gb4. We investigated the effects of Gb4 synthase knockdown in the mouse osteoblast cell line MC3T3-E1 on its proliferation. Furthermore, we administered Gb4 to MC3T3-E1 cells in which Gb4 was suppressed by a glucosylceramide synthase (GCS) inhibitor and evaluated its effects on their proliferation. To elucidate the mechanisms by which Gb4 promotes osteoblast proliferation, the phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2) levels were measured in MC3T3-E1 cells. RESULTS: Osteoblast proliferation was lower in Gb3 synthase knockout mice lacking Gb4 than in wild-type mice. Proliferation was inhibited by Gb4 synthase knockdown in MC3T3-E1 cells. Furthermore, the administration of Gb4 to MC3T3-E1 cells, in which a GCS inhibitor suppressed Gb4, promoted their proliferation. Moreover, it increased the phosphorylated ERK1/2 levels in MC3T3-E1 cells. CONCLUSIONS: Our results suggest that Gb4 expressed in osteoblasts promotes their proliferation through ERK1/2 activation.


Asunto(s)
Osteoblastos , Osteogénesis , Ratones , Animales , Línea Celular , Osteoblastos/metabolismo , Proliferación Celular/genética , Ratones Noqueados
3.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012308

RESUMEN

The ganglioside GD1a has been reported to promote the differentiation of mesenchymal stem cells to osteoblasts in cell culture systems. However, the involvement of gangliosides, including GD1a, in bone formation in vivo remains unknown; therefore, we herein investigated their roles in GM2/GD2 synthase-knockout (GM2/GD2S KO) mice without GD1a. The femoral cancellous bone mass was analyzed using three-dimensional micro-computed tomography. A histomorphometric analysis of bone using hematoxylin and eosin (HE) and tartrate-resistant acid phosphatase was performed to examine bone formation and resorption, respectively. Calcein double labeling was also conducted to evaluate bone formation. Although no significant differences were observed in bone mass or resorption between GM2/GD2S KO mice and wild-type (WT) mice, analyses of the parameters of bone formation using HE staining and calcein double labeling revealed less bone formation in GM2/GD2S KO mice than in WT mice. These results suggest that gangliosides play roles in bone formation.


Asunto(s)
Gangliósidos , Osteogénesis , Animales , Ratones , Ratones Noqueados , N-Acetilgalactosaminiltransferasas , Osteoblastos , Osteogénesis/genética , Microtomografía por Rayos X
4.
Glycoconj J ; 39(2): 145-155, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35315508

RESUMEN

Immunotherapy of malignant cancers is now becoming one of representative approaches to overcome cancers. To construct strategies for immunotherapy, presence of tumor-specific antigens should be a major promise. A number of cancer specific- or cancer-associated antigens have been reported based on various experimental sets and various animal systems. The most reasonable strategy to define tumor-specific antigens might be "autologous typing" performed by Old's group, proposing three classes of tumor-antigens recognized by host immune systems of cancer patients. Namely, class 1, individual antigens that is present only in the patient's sample analyzed; class 2, shared antigens that can be found only in some group of cancers in some patients, but not in normal cells and tissues; class 3, universal antigens that are present in some cancers but also in normal cells and tissues with different densities. Sen Hakomori reported there were novel carbohydrates in cancers that could not be detected in normal cells mainly by biochemical approaches. Consequently, many of class 2 cancer-specific antigens have been revealed to be carbohydrate antigens, and been used for cancer diagnosis and treatment. Not only as cancer markers, but roles of those cancer-associated carbohydrates have also been recognized as functional molecules in cancer cells. In particular, roles of complex carbohydrates in the regulation of cell signaling on the cell surface microdomains, glycolipid-enriched microdomain (GEM)/rafts have been reported by Hakomori and many other researchers including us. The processes and present status of these studies on cancer-associated glycolipids were summarized.


Asunto(s)
Glucolípidos , Neoplasias , Animales , Antígenos de Carbohidratos Asociados a Tumores , Biomarcadores de Tumor , Humanos , Transducción de Señal
5.
Eur J Orthod ; 44(4): 404-411, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34642757

RESUMEN

OBJECTIVES: Orthodontic tooth movement (OTM) increases sympathetic and sensory neurological markers in periodontal tissue. However, the relationship between the sympathetic and sensory nervous systems during OTM remains unclear. Therefore, the present study investigated the relationship between the sympathetic and sensory nervous systems activated by OTM using pharmacological methods. MATERIALS AND METHODS: We compared the effects of sympathectomy and sensory nerve injury during OTM in C57BL6/J mice. Capsaicin (CAP) was used to induce sensory nerve injury. Sympathectomy was performed using 6-hydroxydopamine. To investigate the effects of a ß-agonist on sensory nerve injury, isoproterenol (ISO) was administered to CAP-treated mice. Furthermore, to examine the role of the central nervous system in OTM, the ventromedial hypothalamic nucleus (VMH) was ablated using gold thioglucose. RESULTS: Sensory nerve injury and sympathectomy both suppressed OTM and decreased the percent of the alveolar socket covered with osteoclasts (Oc.S/AS) in periodontal tissue. Sensory nerve injury inhibited increases in OTM-induced calcitonin gene-related peptide (CGRP) immunoreactivity (IR), a marker of sensory neurons, and tyrosine hydroxylase (TH) IR, a marker of sympathetic neurons, in periodontal tissue. Although sympathectomy did not decrease the number of CGRP-IR neurons in periodontal tissue, OTM-induced increases in the number of TH-IR neurons were suppressed. The ISO treatment restored sensory nerve injury-inhibited tooth movement and Oc.S/AS. Furthermore, the ablation of VMH, the centre of the sympathetic nervous system, suppressed OTM-induced increases in tooth movement and Oc.S/AS. CONCLUSIONS: The present results suggest that OTM-activated sensory neurons contribute to enhancements in osteoclast activity and tooth movement through sympathetic nervous signalling.


Asunto(s)
Osteoclastos , Técnicas de Movimiento Dental , Animales , Remodelación Ósea/fisiología , Péptido Relacionado con Gen de Calcitonina/farmacología , Ratones , Ratones Endogámicos C57BL , Células Receptoras Sensoriales , Sistema Nervioso Simpático/fisiología
6.
In Vivo ; 35(6): 3111-3123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34697142

RESUMEN

BACKGROUND/AIM: Glycosphingolipids are known to be involved in bone metabolism. However, their roles and regulatory mechanisms in osteoblast proliferation are largely unknown. In this study, we examined the effects of inhibitors of glucosylceramide synthase (GCS), which is responsible for the generation of all glycosphingolipids, on osteoblast proliferation. MATERIALS AND METHODS: We analyzed the expression of glycosphingolipids and cell growth in MC3T3-E1 mouse osteoblast cells treated with the GCS inhibitors miglustat, D-PDMP and D-PPMP. We also conducted microarray analysis and RNA interference to identify genes involved in cell growth regulated by GCS. RESULTS: Glycosphingolipids GD1a and Gb4 expressed in MC3T3-E1 cells, were suppressed by GCS inhibitors. Furthermore, the proliferation of MC3T3-E1 cells was suppressed by the inhibitors. Using microarray analysis, we predicted nine genes (Fndc1, Acta2, Igfbp5, Cox6a2, Cth, Mymk, Angptl6, Mab21l2, and Igsf10) suppressed by all three inhibitors. Furthermore, partial silencing of Angptl6 by RNA interference reduced MC3T3-E1 cell growth. CONCLUSION: These results show that GCS regulates proliferation through Angptl6 in osteoblasts.


Asunto(s)
Glucosiltransferasas , Osteoblastos , Proteína 6 similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Animales , Diferenciación Celular , Proliferación Celular , Proteínas del Ojo , Glucosiltransferasas/genética , Péptidos y Proteínas de Señalización Intracelular , Ratones
7.
Life Sci ; 284: 119938, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506837

RESUMEN

AIMS: The relationship between stress to endoplasmic reticulum (ER) and periodontitis has been known, and ER stress induced by Porphyromonas gingivalis results in the loss of alveolar bone. Salubrinal is a small synthetic compound and attenuates ER stress through inhibition of de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). In this study, we examined whether salubrinal attenuates periodontitis in a mouse model of experimental periodontal disease. MATERIALS AND METHODS: We evaluated loss of alveolar bone and attachment levels in periodontium using micro-computed tomography (µCT) and hematoxylin-eosin (HE) staining, respectively. Furthermore, we measured osteoclast numbers using tartrate-resistant acid phosphatase (TRAP) staining and osteoblast numbers using HE staining for bone resorption and for bone formation, respectively. To examine the inhibitory effects of salubrinal against pro-inflammatory cytokines, we measured TNF-α and IL1-ß score in periodontium using immunohistostaining. KEY FINDINGS: The results revealed that salubrinal suppressed loss of alveolar bone and attachment levels in periodontium induced by periodontitis. It decreased osteoclast numbers and increased osteoblasts. It also suppressed the expression levels of TNF-α in periodontium. SIGNIFICANCE: These results show that salubrinal alleviates periodontitis through suppression of alveolar bone resorption and the pro-inflammatory cytokine, and promotion of the bone formation. Since salubrinal has been shown to have these beneficial effects for periodontal disease, it may provide a novel therapeutic possibility for the disease.


Asunto(s)
Pérdida de Hueso Alveolar/tratamiento farmacológico , Cinamatos/uso terapéutico , Tiourea/análogos & derivados , Pérdida de Hueso Alveolar/complicaciones , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/patología , Animales , Recuento de Células , Cinamatos/administración & dosificación , Cinamatos/farmacología , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Interleucina-1beta/metabolismo , Masculino , Ratones Endogámicos C57BL , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Periodontitis/complicaciones , Periodontitis/tratamiento farmacológico , Periodontitis/patología , Tiourea/administración & dosificación , Tiourea/farmacología , Tiourea/uso terapéutico , Factor de Transcripción CHOP/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Microtomografía por Rayos X
8.
J Pharmacol Sci ; 147(3): 294-304, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34507638

RESUMEN

Increase of sympathetic activity has been known to exacerbate osteoporosis through promotion of bone resorption. However, it is largely unknown about involvement of sympathetic activity in exacerbation of periodontitis. In this study, we investigated whether α2-adrenergic receptor (α2-AR) agonist guanabenz which decreases sympathetic activity, attenuates alveolar bone resorption in rats having high sympathetic activity with periodontitis. Volumes of residual alveolar bone and attachment levels in periodontium were examined using micro-computed tomography and hematoxylin-eosin staining, respectively. Furthermore, osteoclast numbers per bone surface and osteoclast surface per bone surface were measured using tartrate-resistant acid phosphatase staining. To examine the suppressive effects of guanabenz on pro-inflammatory cytokines, expression levels of tyrosine hydroxylase (TH), TNF-α, IL1-ß, and IL-6 in periodontium were measured using immunohistostaining. Administration of guanabenz attenuated loss of alveolar bone and attachment levels in rats having high sympathetic activity. Furthermore, its administration suppressed osteoclast numbers in rats having high sympathetic activity. TH, TNF-α, IL-1ß, and IL-6 positive cells in periodontium in rats treated with guanabenz for 12 weeks, were lower than those in control rats having high sympathetic activity. This study demonstrated administration of α2-AR agonist guanabenz attenuates alveolar bone resorption through decrease of sympathetic activity in rats.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/administración & dosificación , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Resorción Ósea/etiología , Resorción Ósea/prevención & control , Guanabenzo/administración & dosificación , Guanabenzo/farmacología , Periodontitis/complicaciones , Periodontitis/fisiopatología , Animales , Resorción Ósea/metabolismo , Resorción Ósea/fisiopatología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Masculino , Periodontitis/metabolismo , Periodoncio/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiopatología
9.
Anticancer Res ; 41(4): 1821-1830, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33813387

RESUMEN

BACKGROUND/AIM: Lewis y is expressed in oral squamous cell carcinoma (OSCC) cells and tumors. Previously, we reported that Lewis y was not expressed in invasion areas, and attenuation of proliferation and invasion in OSCC cells was caused by over-expression of Lewis y. However, the roles of Lewis y in the attenuation of malignant properties have not been clarified. In this study, we investigated the roles of Lewis y in OSCC. MATERIALS AND METHODS: The levels of Lewis y on EGFR and the phosphorylation levels of EGFR in OSCC cells were analyzed by immunoprecipitation and western blot. EGFR cross-linking and binding kinetics of EGF were performed. RESULTS: Upon EGF stimulation, phosphorylation and dimer formation of EGFR were more prominent in Lewis y- cells. EGF binding kinetics showed reduced binding sites in Lewis y+ cells. CONCLUSION: Lewis y reduced EGF binding to EGFR, leading to suppression of malignant properties through suppression of EGF signaling.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Antígenos del Grupo Sanguíneo de Lewis/metabolismo , Neoplasias de la Boca/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Sitios de Unión , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Forma de la Célula , Receptores ErbB/metabolismo , Humanos , Cinética , Neoplasias de la Boca/patología , Invasividad Neoplásica , Fosforilación , Unión Proteica , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
10.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008849

RESUMEN

Gangliosides have been considered to modulate cell signals in the microdomain of the cell membrane, lipid/rafts, or glycolipid-enriched microdomain/rafts (GEM/rafts). In particular, cancer-associated gangliosides were reported to enhance the malignant properties of cancer cells. In fact, GD2-positive (GD2+) cells showed increased proliferation, invasion, and adhesion, compared with GD2-negative (GD2-) cells. However, the precise mechanisms by which gangliosides regulate cell signaling in GEM/rafts are not well understood. In order to analyze the roles of ganglioside GD2 in the malignant properties of melanoma cells, we searched for GD2-associating molecules on the cell membrane using the enzyme-mediated activation of radical sources combined with mass spectrometry, and integrin ß1 was identified as a representative GD2-associating molecule. Then, we showed the physical association of GD2 and integrin ß1 by immunoprecipitation/immunoblotting. Close localization was also shown by immuno-cytostaining and the proximity ligation assay. During cell adhesion, GD2+ cells showed multiple phospho-tyrosine bands, i.e., the epithelial growth factor receptor and focal adhesion kinase. The knockdown of integrin ß1 revealed that the increased malignant phenotypes in GD2+ cells were clearly cancelled. Furthermore, the phosphor-tyrosine bands detected during the adhesion of GD2+ cells almost completely disappeared after the knockdown of integrin ß1. Finally, immunoblotting to examine the intracellular distribution of integrins during cell adhesion revealed that large amounts of integrin ß1 were localized in GEM/raft fractions in GD2+ cells before and just after cell adhesion, with the majority being localized in the non-raft fractions in GD2- cells. All these results suggest that GD2 and integrin ß1 cooperate in GEM/rafts, leading to enhanced malignant phenotypes of melanomas.


Asunto(s)
Gangliósidos/metabolismo , Integrinas/metabolismo , Melanoma/patología , Animales , Anticuerpos Monoclonales/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colágeno Tipo I/metabolismo , Gangliósidos/inmunología , Humanos , Integrina beta1/metabolismo , Espectrometría de Masas , Microdominios de Membrana/metabolismo , Ratones , Fenotipo , Fosfotirosina/metabolismo , Transducción de Señal/efectos de los fármacos
11.
J Oral Sci ; 62(4): 393-396, 2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32684574

RESUMEN

Stage-specific embryonic antigens (SSEA-1, 3, and 4) are carbohydrate antigens that have been used as markers of embryonic stem (ES) cells. However, the roles of these antigens in the establishment and maintenance of stemness of ES and induced pluripotent stem (iPS) cells are still poorly understood. This study investigated the biological and functional significance of globo-series glycolipids such as SSEA-3 and 4 in mouse iPS cells induced from tail-tip fibroblasts (TTFs) of α1,4Gal-T-knockout mice (lacking SSEA-3 and 4). These iPS cells were induced by retroviral transduction of four factors (Oct3/4, Sox2, Klf4, and c-Myc) into TTFs, and colonies were picked up. Morphologically, the colonies resembled ES cells and were positive for alkaline phosphatase and ES cell markers. Furthermore, in vitro-differentiated induction experiments after embryoid body formation revealed that some colonies derived from α1, 4Gal-T knockout mice were able to differentiate into three germ layers. Three germ layers were also observed in teratomas from iPS cells derived from α1,4Gal-T-knockout mice. These results suggest that SSEA-3 and 4 are not essential, at least for the establishment and maintenance of stemness of mouse iPS cells.


Asunto(s)
Células Madre Embrionarias , Células Madre Pluripotentes Inducidas , Animales , Antígenos de Carbohidratos Asociados a Tumores , Diferenciación Celular , Células Cultivadas , Fibroblastos , Factor 4 Similar a Kruppel , Ratones , Antígenos Embrionarios Específico de Estadio
12.
Cell Death Dis ; 10(12): 921, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31801950

RESUMEN

Bone loss in postmenopausal osteoporosis is induced chiefly by an imbalance of bone-forming osteoblasts and bone-resorbing osteoclasts. Salubrinal is a synthetic compound that inhibits de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). Phosphorylation of eIF2α alleviates endoplasmic reticulum (ER) stress, which may activate autophagy. We hypothesized that eIF2α signaling regulates bone homeostasis by promoting autophagy in osteoblasts and inhibiting osteoclast development. To test the hypothesis, we employed salubrinal to elevate the phosphorylation of eIF2α in an ovariectomized (OVX) mouse model and cell cultures. In the OVX model, salubrinal prevented abnormal expansion of rough ER and decreased the number of acidic vesiculars. It regulated ER stress-associated signaling molecules such as Bip, p-eIF2α, ATF4 and CHOP, and promoted autophagy of osteoblasts via regulation of eIF2α, Atg7, LC3, and p62. Salubrinal markedly alleviated OVX-induced symptoms such as reduction of bone mineral density and bone volume fraction. In primary bone-marrow-derived cells, salubrinal increased the differentiation of osteoblasts, and decreased the formation of osteoclasts by inhibiting nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). Live cell imaging and RNA interference demonstrated that suppression of osteoclastogenesis is in part mediated by Rac1 GTPase. Collectively, this study demonstrates that ER stress-autophagy axis plays an important role in OVX mice. Bone-forming osteoblasts are restored by maintaining phosphorylation of eIF2α, and bone-resorbing osteoclasts are regulated by inhibiting NFATc1 and Rac1 GTPase.


Asunto(s)
Factor 2 Eucariótico de Iniciación/genética , Factores de Transcripción NFATC/genética , Neuropéptidos/genética , Osteoporosis Posmenopáusica/genética , Osteoporosis/genética , Proteína de Unión al GTP rac1/genética , Animales , Apoptosis/genética , Autofagia/genética , Proteína 7 Relacionada con la Autofagia/genética , Diferenciación Celular/genética , Estrés del Retículo Endoplásmico/genética , Femenino , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis/genética , Osteoporosis/patología , Osteoporosis Posmenopáusica/patología , Transducción de Señal/genética
13.
Int J Mol Sci ; 20(18)2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540393

RESUMEN

Glycosphingolipids are known to play a role in developing and maintaining the integrity of various organs and tissues. Among glycosphingolipids, there are several reports on the involvement of gangliosides in bone metabolism. However, there have been no reports on the presence or absence of expression of globo-series glycosphingolipids in osteoblasts and osteoclasts, and the involvement of their glycosphingolipids in bone metabolism. In the present study, we investigated the presence or absence of globo-series glycosphingolipids such as Gb3 (globotriaosylceramide), Gb4 (globoside), and Gb5 (galactosyl globoside) in osteoblasts and osteoclasts, and the effects of genetic deletion of Gb3 synthase, which initiates the synthesis of globo-series glycosphingolipids on bone metabolism. Among Gb3, Gb4, and Gb5, only Gb4 was expressed in osteoblasts. However, these glycosphingolipids were not expressed in pre-osteoclasts and osteoclasts. Three-dimensional micro-computed tomography (3D-µCT) analysis revealed that femoral cancellous bone mass in Gb3 synthase-knockout (Gb3S KO) mice was lower than that in wild type (WT) mice. Calcein double labeling also revealed that bone formation in Gb3S KO mice was significantly lower than that in WT mice. Consistent with these results, the deficiency of Gb3 synthase in mice decreased the number of osteoblasts on the bone surface, and suppressed mRNA levels of osteogenic differentiation markers. On the other hand, osteoclast numbers on the bone surface and mRNA levels of osteoclast differentiation markers in Gb3S KO mice did not differ from WT mice. This study demonstrated that deletion of Gb3 synthase in mice decreases bone mass via attenuation of bone formation.


Asunto(s)
Galactosiltransferasas/genética , Eliminación de Gen , Osteoblastos/citología , Osteogénesis , Animales , Línea Celular , Células Cultivadas , Glicoesfingolípidos/genética , Masculino , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Células RAW 264.7
14.
Int J Mol Sci ; 20(11)2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31185614

RESUMEN

Gangliosides are widely expressed in almost all tissues and cells and are also considered to be essential in the development and maintenance of various organs and tissues. However, little is known about their roles in bone metabolism. In this study, we investigated the effects of genetic deletion of ganglioside D3 (GD3) synthase, which is responsible for the generation of all b-series gangliosides, on bone metabolism. Although b-series gangliosides were not expressed in osteoblasts, these gangliosides were expressed in pre-osteoclasts. However, the expression of these gangliosides was decreased after induction of osteoclastogenesis by receptor activator of nuclear factor kappa-B ligand (RANKL). Three-dimensional micro-computed tomography (3D-µCT) analysis revealed that femoral cancellous bone mass in GD3 synthase-knockout (GD3S KO) mice was higher than that in wild type (WT) mice at the age of 40 weeks, although there were no differences in that between GD3S KO and WT mice at 15 weeks old. Whereas bone formation parameters (osteoblast numbers/bone surface and osteoblast surface/bone surface) in GD3S KO mice did not differ from WT mice, bone resorption parameters (osteoclast numbers/bone surface and osteoclast surface/bone surface) in GD3S KO mice became significantly lower than those in WT mice at 40 weeks of age. Collectively, this study demonstrates that deletion of GD3 synthase attenuates bone loss that emerges with aging.


Asunto(s)
Envejecimiento/patología , Resorción Ósea/genética , Sialiltransferasas/genética , Animales , Células Cultivadas , Gangliósidos/metabolismo , Ratones , Osteoclastos/metabolismo , Osteoclastos/patología , Osteogénesis , Ligando RANK/metabolismo , Células RAW 264.7 , Sialiltransferasas/deficiencia
15.
Life Sci ; 224: 232-240, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30930116

RESUMEN

AIMS: Opioid receptor blockers such as naloxone and naltrexone have been suggested to have a bone mass-increasing effect. However, the mechanisms at play have not been clarified. We examined the effects of naltrexone on osteoblasts and determined the expression of opioid growth factor receptor (OGFR) in osteoblasts. Naltrexone blocks the OGFR and other canonical opioid receptors. Thus, we designed experiments to clarify the effects of naltrexone on bone tissue by examining the physiological role of OGFR signaling in osteoblasts and the changes in bone structure after naltrexone systemic administration in mice. MAIN METHODS: We used mouse osteoblast-like cell line MC3T3-E1 for in vitro experiments. We cultured MC3T3-E1 cells in the presence of the OGFR agonist met-enkephalin (met-enk). Then, we measured cell proliferation activity and analyzed the expression levels of cell proliferation-related genes. For our in vivo experiments, we administered naltrexone intraperitoneally to mice daily for 28 days and administered the animals in the control group equivalent volumes of saline. After sacrificing the mice, we performed micro-computed tomography and bone morphology analyses. KEY FINDINGS: Met-enk suppressed cell proliferation in MC3T3-E1 cells. Moreover, Low dose naltrexone administration significantly increased their femoral bone mass, bone formation ratio, and osteoblast number/bone surface values when comparing the values for the same variables in the control group. SIGNIFICANCE: Our results suggest that naltrexone increases bone mass due to osteoblast number increments caused by the OGFR signaling block. Opioid receptor blockers have potential as therapeutic agents for osteoporosis as well as opioid antagonists.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Osteoblastos/citología , Receptores Opioides/química , Animales , Proliferación Celular , Células Cultivadas , Encefalina Metionina/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Naltrexona/administración & dosificación , Antagonistas de Narcóticos/administración & dosificación , Neurotransmisores/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Receptores Opioides/genética , Receptores Opioides/metabolismo
16.
Cancer Sci ; 110(5): 1544-1551, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30895683

RESUMEN

Cancer-associated glycosphingolipids have been used as markers for diagnosis and targets for immunotherapy of malignant tumors. Recent progress in the analysis of their implications in the malignant properties of cancer cells revealed that cancer-associated glycosphingolipids are not only tumor markers, but also functional molecules regulating various signals introduced by membrane microdomains, lipid rafts. In particular, a novel approach, enzyme-mediated activation of radical sources combined with mass spectrometry, has enabled us to clarify the mechanisms by which cancer-associated glycosphingolipids regulate cell signals based on the interaction with membrane molecules and formation of molecular complexes on the cell surface. Novel findings obtained from these approaches are now providing us with insights into the development of new anticancer therapies targeting membrane molecular complexes consisting of cancer-associated glycolipids and their associated membrane molecules. Thus, a new era of cancer-associated glycosphingolipids has now begun.


Asunto(s)
Glicoesfingolípidos/metabolismo , Neoplasias/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Membrana Celular/metabolismo , Humanos , Espectrometría de Masas , Transducción de Señal
17.
PLoS One ; 13(11): e0206881, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30462668

RESUMEN

Ganglioside GD3 is widely expressed in human malignant melanomas, and has been reported to be involved in the increased cell proliferation and invasion. In this study, we established GM3-, GM2-, GM1-, GD3-, or GD2-expressing melanoma cell lines by transfecting cDNAs of glyscosyltransferases, and effects of individual gangliosides on the cell phenotypes and signals were examined. The phenotypes of established ganglioside-expressing cells were quite different, i.e. cell growth increased as following order; GD2+, GD3+ > GM1+, GM2+, GM3+ cells. Cell invasion activity increased as GD3+ ≧ GM2+ > GM1+, GM3+, GD2+ cells. Intensity of cell adhesion to collagen I (CL-I) and spreading increased as GD2+ >> GD3+, GM1+ > GM2+, GM3+ cells. In particular, cell adhesion of GD2+ cells was markedly strong. As for cell migration velocity, GD2+ cells were slower than all other cells. The immunocytostaining revealed close localization of gangliosides and F-actin in lamellipodia. Immunoblotting of phosphorylated p130Cas and paxillin by serum treatment reveled that these phosphorylations were more increased in GD3+ cells than in GD2+ or GM3+ cells, while phosphorylation of Akt underwent similarly increased phosphorylation between GD3+ and GD2+ cells compared with GM3+ cells. While GD2 and GD3 enhanced cell growth, GD3 might also contribute in cell invasion. On the other hand, GD2 might contribute in the solid fixation of melanoma cells at metastasized sites. These results suggested that individual gangliosides exert distinct roles in the different aspects of melanomas by differentially regulating cytoskeletons and signaling molecules.


Asunto(s)
Carcinogénesis/patología , Gangliósidos/metabolismo , Melanoma/patología , Neoplasias Cutáneas/patología , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos
18.
J Oral Sci ; 60(3): 352-359, 2018 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-29984785

RESUMEN

Dental pulp is known to play crucial roles in homeostasis of teeth and periodontal tissue. Although resorption of bone around the roots of nonvital teeth is occasionally observed in clinical practice, little is known about the role of dental pulp in osteoclastogenesis. Here we evaluated the effects of conditioned medium (CM) from rat dental pulp on osteoclastogenesis. It was found that the CM reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts, but did not alter the mRNA levels of nuclear factor of activated T-cells, cytoplasmic 1 and TRAP. To further understand the mechanism behind these results, we evaluated the effects of CM on osteoclast precursors and found that the CM removed cell processes, resulting in a significant reduction in the number of attached cells and an increase in the number of freely floating cells. Furthermore, the CM suppressed the mRNA levels of focal adhesion kinase and paxillin, which are involved in cell adhesiveness and spreading. Collectively, the present results show that CM from dental pulp serves as an inhibitor of osteoclastogenesis by reducing the number and adhesiveness of osteoclast precursors, suggesting novel therapeutic applicability for osteoporosis.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Pulpa Dental/citología , Pulpa Dental/metabolismo , Osteoclastos/citología , Animales , Adhesión Celular , Células Cultivadas , Ligando RANK/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Biomed Rep ; 8(5): 407-416, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29725523

RESUMEN

The sympathetic nervous system is known to regulate osteoclast development. However, the involvement of α2-adrenergic receptors (α2-ARs) in osteoclastogenesis is not well understood. In the present study, their potential role in osteoclastogenesis was investigated. Guanabenz, clonidine and xylazine were used as agonists of α2-ARs, while yohimbine and idazoxan were employed as antagonists. Using RAW264.7 pre-osteoclast and primary bone marrow cells, the mRNA expression of the osteoclast-related genes nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), tartrate-resistant acid phosphatase (TRAP) and cathepsin K was evaluated following induction with receptor activator of nuclear factor κB ligand (RANKL). TRAP staining was also conducted to assess effects on osteoclastogenesis in mouse bone marrow cells in vitro. Administration of 5-20 µM guanabenz (P<0.01, for RANKL-only treatment), 20 µM clonidine (P<0.05, for RANKL-only treatment) and 20 µM xylazine (P<0.05, for RANKL-only treatment) attenuated RANKL-induced upregulation of NFATc1, TRAP and cathepsin K mRNA. Furthermore, the reductions in these mRNAs by 10 µM guanabenz and 20 µM clonidine in the presence of RANKL were attenuated by 20 µM yohimbine or idazoxan (P<0.05). The administration of 5-20 µM guanabenz (P<0.01, for RANKL-only treatment) and 10-20 µM clonidine (P<0.05, for RANKL-only treatment) also decreased the number of TRAP-positive multi-nucleated osteoclasts. Collectively, the present study demonstrates that α2-ARs may be involved in the regulation of osteoclastogenesis.

20.
Sci Rep ; 7(1): 3459, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28615627

RESUMEN

To investigate phenotypic and genotypic alterations before and after bone metastasis, we conducted genome-wide mRNA profiling and DNA exon sequencing of two cell lines (TMD and BMD) derived from a mouse xenograft model. TMD cells were harvested from the mammary fat pad after transfecting MDA-MB-231 breast cancer cells, while BMD cells were isolated from the metastasized bone. Compared to BMD cells, TMD cells exhibited higher cellular motility. In contrast, BMD cells formed a spheroid with a smoother and more circular surface when co-cultured with osteoblasts. In characterizing mRNA expression using principal component analysis, S100 calcium-binding protein A4 (S100A4) was aligned to a principal axis associated with metastasis. Partial silencing of S100A4 suppressed migratory capabilities of TMD cells, while Paclitaxel decreased the S100A4 level and reduced TMD's cellular motility. DNA mutation analysis revealed that the glutamate metabotropic receptor 3 (GRM3) gene gained a premature stop codon in BMD cells, and silencing GRM3 in TMD cells altered their spheroid shape closer to that of BMD cells. Collectively, this study demonstrates that metastasized cells are less migratory due in part to the post-metastatic downregulation of S100A4 and GRM3. Targeting S100A4 and GRM3 may help prevent bone metastasis.


Asunto(s)
Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Receptores de Glutamato Metabotrópico/genética , Proteína de Unión al Calcio S100A4/genética , 3',5'-AMP Cíclico Fosfodiesterasas/genética , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Línea Celular Tumoral , Estudio de Asociación del Genoma Completo , Humanos , Cadenas beta de Integrinas/genética , Cadenas beta de Integrinas/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Mutación , Fenotipo , Interferencia de ARN , ARN Interferente Pequeño/genética , Receptores de Glutamato Metabotrópico/metabolismo , Proteína de Unión al Calcio S100A4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA