RESUMEN
This study presents a novel copper-based redox shuttle that employs the PY5 pentadentate polypyridyl ligand in a dye-sensitized solar cell (DSSC). The [Cu(PY5)]2+ complex exhibits a unique five-coordinate square pyramidal geometry, characterized by a strategically labile axial position, to facilitate efficient dye regeneration while minimizing electron recombination, thereby enhancing DSSC performance. Notably, the inclusion of 4-tert-butylpyridine (TBP) as an additive is shown to significantly modulate the electrochemical and photophysical properties of the copper complexes, attributed to its coordination to the vacant axial site. This interaction leads to an improved open-circuit voltage and overall device efficiency, with the complexes achieving promising efficiencies under standard solar irradiance. The findings underscore the potential of utilizing copper-based redox shuttles with designed ligand geometries to overcome the limitations of current DSSC materials, opening new avenues for the design and optimization of solar energy conversion devices. This work not only contributes to the fundamental understanding of the behavior of copper complexes in DSSCs but also paves the way for future research aimed at exploiting the full potential of such geometrical and electronic configurations for the development of more robust and efficient solar energy solutions.
RESUMEN
Cobalt polypyridyl complexes stand out as efficient catalysts for electrochemical proton reduction, but investigations into their operating mechanisms, with broad-reaching implications in catalyst design, have been limited. Herein, we investigate the catalytic activity of a cobalt(II) polypyridyl complex bearing a pendant pyridyl base with a series of organic acids spanning 20 pKa units in acetonitrile. Structural analysis, as well as electrochemical studies, reveals that the Co(III) hydride intermediate is formed through reduction of the Co(II) catalyst followed by direct metal protonation in the initial EC step despite the presence of the pendant base, which is commonly thought of as a more kinetically accessible protonation site. Protonation of the pendant base occurs after the Co(III) hydride intermediate is further reduced in the overall ECEC pathway. Additionally, when the acid used is sufficiently strong, the Co(II) catalyst can be protonated, and the Co(III) hydride can react directly with acid to release H2. With thorough mechanistic understanding, the appropriate electroanalytical methods were identified to extract rate constants for the elementary steps over a range of conditions. Thermodynamic square schemes relating catalytic intermediates proposed in the three electrocatalytic HER mechanisms were constructed. These findings reveal a full description of the HER electrocatalysis mediated by this molecular system and provide insights into strategies to improve synthetic fuel-forming catalysts operative through metal hydride intermediates.
RESUMEN
We report an in-depth investigation into the ammonia oxidation mechanism by the catalyst [RuIII(tpy)(dmabpy)NH3]3+ ([Ru(NH3)]3+). Stoichiometric reactions of [Ru(NH3)]3+ were carried out with exogenous noncoordinating bases to trigger a proposed redox disproportionation reaction, which was followed using variable-temperature NMR spectroscopy. An intermediate species was identified as a dinitrogen-bridged complex using 15N NMR and Raman spectroscopy on isotopically labeled complexes. This intermediate is proposed to derive from coupling of nitridyl species formed upon sequential redox disproportion reactions. Acetonitrile displaces the dinitrogen bridge to yield free N2. DFT calculations support this lower-energy pathway versus that previously reported for ammonia oxidation by the parent [RuIII(tpy)(bpy)NH3]3+ complex. These experimental and computational results are consistent with the interpretation of redox disproportionation involving sequential hydrogen atom transfer reactions by an amide/aminyl intermediate, [Ru(NH2)-]+ â [Ru(NH2)â¢]+, formed upon deprotonation of the parent complex. Control experiments employing a large excess of ammonia as a base indicate this new proposed lower-energy pathway contributes to the oxidation of ammonia to dinitrogen in conditions relevant to electrocatalysis. In addition, analogous methylamine complexes, [Ru(NH2CH3)]2+/3+, were prepared to further test the proposed mechanism. Treating [Ru(NH2CH3)]3+ with a base cleanly yields two products [Ru(NH2CH3)]2+ and [Ru(CN)]+ in an â¼3:1 ratio, fully consistent with the proposed cascade of hydrogen atom transfer reactions by an intermediate.
RESUMEN
BiVO4 is an important photoanode material for water oxidation, but its photoelectrochemistry regarding the triiodide/iodide redox couple is not well understood. Here, we use a combination of open circuit potential measurements, photoelectrochemical scans, and liquid surface photovoltage spectroscopy (SPS) to confirm that BiVO4/triiodide/iodide electrolyte contacts produce up to 0.55 V photovoltage under 23 mW/cm-2 illumination from a 470 nm LED. Inspired by these results, we construct FTO/BiVO4/KI(I2)aq/Pt sandwich photoelectrochemical cells from electrochemically grown 0.5 × 0.5 cm2 BiVO4 and Mo-doped BiVO4 films. Under AM 1.5 illumination, the devices have up to 0.22% energy conversion efficiency, 0.32 V photovoltage, and 1.8 mA cm-2 photocurrent. Based on SPS, hole transfer to iodide is sufficiently fast to prevent the competing water oxidation reaction. Mo doping increases the incident photon-to-current efficiency to up to 55% (at 425 nm under front illumination) by improving the BiVO4 conductivity, but this comes at the expense of a lower photovoltage resulting from recombination at the Mo defects and a detrimental Schottky junction at the interface with FTO. Additional photovoltage losses are caused by the offset between the BiVO4 valence band edge and the triiodide/iodide electrochemical potential and by electron back transfer to iodide at the FTO back contact (shunting). Overall, this work provides the first example of a BiVO4-liquid photovoltaic cell and an analysis of its limitations. Even though the larger band gaps of metal oxides constrain their solar energy conversion efficiency, their transparency to visible light and deep valence bands makes them suitable for tandem photovoltaic devices.
RESUMEN
Strong-field hexadentate ligands were synthesized and coordinated to cobalt metal centers to result in three new low-spin to low-spin Co(III/II) redox couples. The ligand backbone has been modified with dimethyl amine groups to result in redox potential tuning of the Co(III/II) redox couples from -200 to -430 mV versus Fc+/0. The redox couples surprisingly undergo a reversible molecular switch rearrangement from five-coordinate Co(II) to six-coordinate Co(III) despite the ligands being hexadentate. The complexes exhibit modestly faster electron self-exchange rate constants of 2.2-4.2 M-1 s-1 compared to the high-spin to low-spin redox couple [Co(bpy)3]3+/2+ at 0.27 M-1 s-1, which is attributed to the change in spin state being somewhat offset by this coordination switching behavior. The complexes were utilized as redox shuttles in dye-sensitized solar cells with the near-IR AP25 + D35 dye system and exhibited improved photocurrents over the [Co(bpy)3]3+/2+ redox shuttle (19.8 vs 18.0 mA/cm2). Future directions point toward pairing the low-spin to low-spin Co(II/III) tunable series to dyes with significantly more negative highest occupied molecular orbital potentials that absorb into the near-IR where outer sphere redox shuttles have failed to produce efficient dye regeneration.
Asunto(s)
Cobalto , Luz Solar , Ligandos , Oxidación-Reducción , ColorantesRESUMEN
Tuning the surface structure of the photoelectrode provides one of the most effective ways to address the critical challenges in artificial photosynthesis, such as efficiency, stability, and product selectivity, for which gallium nitride (GaN) nanowires have shown great promise. In the GaN wurtzite crystal structure, polar, semipolar, and nonpolar planes coexist and exhibit very different structural, electronic, and chemical properties. Here, through a comprehensive study of the photoelectrochemical performance of GaN photocathodes in the form of films and nanowires with controlled surface polarities we show that significant photoelectrochemical activity can be observed when the nonpolar surfaces are exposed in the electrolyte, whereas little or no activity is measured from the GaN polar c-plane surfaces. The atomic origin of this fundamental difference is further revealed through density functional theory calculations. This study provides guideline on crystal facet engineering of metal-nitride photo(electro)catalysts for a broad range of artificial photosynthesis chemical reactions.
Asunto(s)
Galio , Nanoestructuras , Nanocables , Catálisis , Galio/química , Nanoestructuras/química , Nanocables/químicaRESUMEN
Metal oxide semiconductor/chalcogenide quantum dot (QD) heterostructured photoanodes show photocurrent densities >30 mA/cm2 with ZnO, approaching the theoretical limits in photovoltaic (PV) cells. However, comparative performance has not been achieved with TiO2. Here, we applied a TiO2(B) surface passivation layer (SPL) on TiO2/QD (PbS and CdS) and achieved a photocurrent density of 34.59 mA/cm2 under AM 1.5G illumination for PV cells, the highest recorded to date. The SPL improves electron conductivity by increasing the density of surface states, facilitating multiple trapping/detrapping transport, and increasing the coordination number of TiO2 nanoparticles. This, along with impeded electron recombination, led to enhanced collection efficiency, which is a major factor for performance. Furthermore, SPL-treated TiO2/QD photoanodes were successfully exploited in photoelectrochemical water splitting cells, showing an excellent photocurrent density of 14.43 mA/cm2 at 0.82 V versus the Reversible Hydrogen Electrode (RHE). These results suggest a new promising strategy for the development of high-performance photoelectrochemical devices.
RESUMEN
Unraveling the charge-carrier dynamics at electrocatalyst/electrode interfaces is critical for the development of efficient photoelectrochemical (PEC) water oxidation. Unlike the majority of photoanodes investigated for PEC water oxidation, the integration of electrocatalysts with CuWO4 electrodes generally results in comparable or worse performance compared to the bare electrode. This is despite the fact that the surface state recombination limits the water oxidation efficiency with CuWO4 electrodes, and an electrocatalyst ought to bypass this reaction and improve performance. Here, we present results that deepen the understanding of the energetics and electron-transfer processes at the CuWO4/electrocatalyst interface, which controls the performance of such systems. Ni0.75Fe0.25Oy (denoted as Ni75) was chosen as a model electrocatalyst, and through dual-working electrode experiments, we have been able to provide significant insight into the role of the electrocatalyst on the charge-transfer process at the CuWO4/Ni75 interface. We have shown a lack of performance improvement for CuWO4/Ni75 relative to the bare electrode to water oxidation. We attribute this surprising result to water oxidation on the CuWO4 surface kinetically outcompeting hole transfer to the Ni75 electrocatalyst interface.
RESUMEN
Global ammonia production reached 175 million metric tons in 2016, 90% of which is produced from high purity N2 and H2 gases at high temperatures and pressures via the Haber-Bosch process. Reliance on natural gas for H2 production results in large energy consumption and CO2 emissions. Concerns of human-induced climate change are spurring an international scientific effort to explore new approaches to ammonia production and reduce its carbon footprint. Electrocatalytic N2 reduction to ammonia is an attractive alternative that can potentially enable ammonia synthesis under milder conditions in small-scale, distributed, and on-site electrolysis cells powered by renewable electricity generated from solar or wind sources. This review provides a comprehensive account of theoretical and experimental studies on electrochemical nitrogen fixation with a focus on the low selectivity for reduction of N2 to ammonia versus protons to H2. A detailed introduction to ammonia detection methods and the execution of control experiments is given as they are crucial to the accurate reporting of experimental findings. The main part of this review focuses on theoretical and experimental progress that has been achieved under a range of conditions. Finally, comments on current challenges and potential opportunities in this field are provided.
RESUMEN
High-performance mesoporous hematite photoanodes modified with a conductive water oxidation catalyst, Ni0.75Fe0.25OxHy, for photoelectrochemical water oxidation are limited by shunting. We present a general method to overcome shunting via the selective electrodeposition of a thin poly(phenylene oxide) (PPO) insulating layer onto the exposed transparent conductive oxide substrate following catalyst deposition.
RESUMEN
Light-activated theranostics offer promising opportunities for disease diagnosis, image-guided surgery, and site-specific personalized therapy. However, current fluorescent dyes are limited by low brightness, high cytotoxicity, poor tissue penetration, and unwanted side effects. To overcome these limitations, we demonstrate a platform for optoelectronic tuning, which allows independent control of the optical properties from the electronic properties of fluorescent organic salts. This is achieved through cation-anion pairing of organic salts that can modulate the frontier molecular orbital without impacting the bandgap. Optoelectronic tuning enables decoupled control over the cytotoxicity and phototoxicity of fluorescent organic salts by selective generation of mitochondrial reactive oxygen species that control cell viability. We show that through counterion pairing, organic salt nanoparticles can be tuned to be either nontoxic for enhanced imaging, or phototoxic for improved photodynamic therapy.
Asunto(s)
Colorantes Fluorescentes/farmacología , Compuestos Orgánicos/farmacología , Fármacos Fotosensibilizantes/farmacología , Sales (Química)/farmacología , Células A549 , Animales , Aniones/química , Cationes/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dermatitis Fototóxica/prevención & control , Femenino , Colorantes Fluorescentes/química , Humanos , Ratones , Nanopartículas/química , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Imagen Óptica/métodos , Compuestos Orgánicos/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/metabolismo , Sales (Química)/química , Nanomedicina Teranóstica/métodos , Trasplante HeterólogoRESUMEN
Tantalum nitride is a promising photoanode material for solar water splitting, but further study and practical use are constrained by the harsh conditions of the synthesis from Ta metal. Here, we report the direct deposition of crystalline Ta3N5 on fluorine-doped tin oxide (FTO) substrate via a custom-built atomic layer deposition (ALD) system. A combination of TaCl5 (Ta precursor) and ammonia (N source) was sequentially pulsed into the ALD reactor with the substrate heated to 550 °C to deposit compact and thin films of Ta3N5 with controllable thicknesses on FTO substrates. Importantly, it is shown that the FTO is chemically and structurally stable under the reducing conditions of ammonia at 550 °C. These electrodes produced an exceptional photocurrent onset potential of â¼0.3 V versus reversible hydrogen electrode (RHE) with a maximum photocurrent of â¼2.4 mA cm-2 at 1.23 V versus RHE. Results of photoelectrochemical investigations as a function of film thickness and illumination direction reveal that the performance of Ta3N5 is controlled by a hole diffusion length of â¼50 nm. These results are crucial for the successful integration of Ta3N5 in efficient unassisted water-splitting applications.
RESUMEN
Photoelectrochemical (PEC) water splitting has been intensively studied in the past decades as a promising method for large-scale solar energy storage. Among the various issues that limit the progress of this field, the lack of photoelectrode materials with suitable properties in all aspects of light absorption, charge separation and transport, and charge transfer is a key challenge, which has attracted tremendous research attention. A large variety of compositions, in different forms, have been tested. This review aims to summarize efforts in this area, with a focus on materials-related considerations. Issues discussed by this review include synthesis, optoelectronic properties, charge behaviors and catalysis. In the recognition that thin-film materials are representative model systems for the study of these issues, we elected to focus on this form, so as to provide a concise and coherent account on the different strategies that have been proposed and tested. Because practical implementation is of paramount importance to the eventual realization of using solar fuel for solar energy storage, we pay particular attention to strategies proposed to address the stability and catalytic issues, which are two key factors limiting the implementation of efficient photoelectrode materials. To keep the overall discussion focused, all discussions were presented within the context of water splitting reactions. How the thin-film systems may be applied for fundamental studies of the water splitting chemical mechanisms and how to use the model system to test device engineering design strategies are discussed.
RESUMEN
We report that ruthenium polypyridyl complexes can catalyze ammonia oxidation to dinitrogen at room temperature and ambient pressure. During bulk electrolysis experiments, gas chromatography and mass spectrometry analysis of the headspace in the electrochemical cell showed that dinitrogen and dihydrogen are generated from ammonia with high faradaic efficiencies. A proposed mechanism where a hydrazine complex is the initial N-N bonded intermediate is supported by chemical and electrochemical experiments. This is a well-defined system for homogeneous electrocatalytic ammonia oxidation. It establishes a platform for answering mechanistic questions relevant to using ammonia to store and distribute renewable energy.
Asunto(s)
Amoníaco/química , Complejos de Coordinación/química , Energía Renovable , Rutenio/química , Catálisis , Electrólisis , Cromatografía de Gases y Espectrometría de Masas , Nitrógeno/química , Oxidación-ReducciónRESUMEN
Copper bipyridyl redox couples are intresting mediators for dye-sensitized solar cells (DSSCs). Here we show that the electrolyte additive 4-tert-butylpyridine (TBP) actually substitutes common bidentate ligands on the Cu(ii) species to form [Cu(TBP)4]2+, which is a poor electron acceptor and thus allows high voltages and charge collection efficiencies to be achieved.
RESUMEN
A new low-spin (LS) cobalt(II) outer-sphere redox shuttle (OSRS) [Co(PY5Me2)(CN)]+, where PY5Me2 represents the pentadentate ligand 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine, has been synthesized and characterized for its potential application in dye-sensitized solar cells (DSSCs). Introduction of the strong field CN- ligand into the open axial coordination site forced the cobalt(II) complex, [Co(PY5Me2)(CN)]+, to become LS based upon the complex's magnetic susceptibility (1.91 ± 0.02 µB), determined by the Evans method. Interestingly, dimerization and subsequent cobalt hexacyanide cluster formation of the [Co(PY5Me2)(CN)]+ monomer was observed upon long-term solvent exposure or addition of a supporting electrolyte for electrochemical characterization. Although long-term stability of the [Co(PY5Me2)(CN)]+ complex made it difficult to fabricate liquid electrolytes for DSSC applications, short-term stability in neat solvent afforded the opportunity to isolate the self-exchange kinetics of [Co(PY5Me2)(CN)]2+/+ via stopped-flow spectroscopy. Use of Marcus theory provided a smaller than expected self-exchange rate constant of 20 ± 5.5 M-1 s-1 for [Co(PY5Me2)(CN)]2+/+, which we attribute to a Jahn-Teller effect observed from the collected monomer crystallographic data. When compared side-by-side to cobalt tris(2,2'-bipyridine), [Co(bpy)3]3+, DSSCs employing [Co(PY5Me2)(CN)]2+ are expected to achieve superior charge collection, which result from a smaller rate constant, ket, for recombination based upon simple dark J- E measurements of the two redox shuttles. Given the negative redox potential (0.254 V vs NHE) of [Co(PY5Me2)(CN)]2+/+ and the slow recombination kinetics, [Co(PY5Me2)(CN)]2+/+ becomes an attractive OSRS to regenerate near IR absorbing sensitizers in solid-state DSSC devices.
RESUMEN
Organic-inorganic halide perovskites have emerged as one of the most promising materials for photovoltaic applications. Because of the polycrystalline nature of perovskite thin films, it is crucial to investigate the impact of microstructures on device performance. In this study, we employ ramp-annealing to tailor the texture of perovskite thin films via controlling the nucleation of perovskite grains. Electrochemical impedance spectroscopy studies further suggest that the thin film texture impacts not only the charge collection at the contact but also the carrier transport in the bulk perovskite layer. The combination of the two effects leads to enhanced performance in devices constructed of preferentially oriented perovskite thin films.
RESUMEN
Inverted perovskite solar cells (PSCs) incorporating poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT) as the hole transport/extraction layer have been broadly investigated in recent years. However, most PSCs which incorporate PEDOT as the hole transport layer (HTL) suffer from lower device performance stemming from reduced photocurrent and low open-circuit voltage around 0.95 V. Here, we report an ultrathin PEDOT layer as the HTL for efficient inverted structure PSCs. The transparency, conductivity, and resulting film morphology were studied and compared with traditional architectures and thicker PEDOT layers. The PSC device incorporating an ultrathin PEDOT layer shows significant improvement in short-circuit current density (J SC), open-circuit voltage (V OC), and power conversion efficiency. Because ultrathin PEDOT layers can be easily obtained by dilution, this study suggests a simple way to improve the PSC performance and provide a route to further reduce the fabrication complexity and cost of PSCs.
RESUMEN
Halide perovskite solar cells have seen dramatic progress in performance over the past several years. Certified efficiencies of inverted structure (p-i-n) devices have now exceeded 20%. In these p-i-n devices, fullerene compounds are the most popular electron-transfer materials. However, the full function of fullerenes in perovskite solar cells is still under investigation, and the mechanism of photocurrent hysteresis suppression by fullerene remains unclear. In previous reports, thick fullerene layers (>20 nm) were necessary to fully cover the perovskite film surface to make good contact with perovskite film and avoid large leakage currents. In addition, the solution-processed fullerene layer has been broadly thought to infiltrate into the perovskite film to passivate traps on grain boundary surfaces, causing suppressed photocurrent hysteresis. In this work, we demonstrate an efficient perovskite photovoltaic device with only 1 nm C60 deposited by vapor deposition as the electron-selective material. Utilizing a combination of fluorescence microscopy and impedance spectroscopy, we show that the ultrathin C60 predominately acts to extract electrons from the perovskite film while concomitantly suppressing the photocurrent hysteresis by reducing space charge accumulation at the interface. This work ultimately helps to clarify the dominant role of fullerenes in perovskite solar cells while simplifying perovskite solar cell design to reduce manufacturing costs.
RESUMEN
Electrocatalysts improve the efficiency of light-absorbing semiconductor photoanodes driving the oxygen evolution reaction, but the precise function(s) of the electrocatalysts remains unclear. We directly measure, for the first time, the interface carrier transport properties of a prototypical visible-light-absorbing semiconductor, α-Fe2O3, in contact with one of the fastest known water oxidation catalysts, Ni0.8Fe0.2O x , by directly measuring/controlling the current and/or voltage at the Ni0.8Fe0.2O x catalyst layer using a second working electrode. The measurements demonstrate that the majority of photogenerated holes in α-Fe2O3 directly transfer to the catalyst film over a wide range of conditions and that the Ni0.8Fe0.2O x is oxidized by photoholes to an operating potential sufficient to drive water oxidation at rates that match the photocurrent generated by the α-Fe2O3. The Ni0.8Fe0.2O x therefore acts as both a hole-collecting contact and a catalyst for the photoelectrochemical water oxidation process. Separate measurements show that the illuminated junction photovoltage across the α-Fe2O3|Ni0.8Fe0.2O x interface is significantly decreased by the oxidation of Ni2+ to Ni3+ and the associated increase in the Ni0.8Fe0.2O x electrical conductivity. In sum, the results illustrate the underlying operative charge-transfer and photovoltage generation mechanisms of catalyzed photoelectrodes, thus guiding their continued improvement.