Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
JVS Vasc Sci ; 4: 100095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36852171

RESUMEN

Objective: Hydrogen sulfide is a proangiogenic gas produced primarily by the transsulfuration enzyme cystathionine-γ-lyase (CGL). CGL-dependent hydrogen sulfide production is required for neovascularization in models of peripheral arterial disease. However, the benefits of increasing endogenous CGL and its mechanism of action have not yet been elucidated. Methods: Male whole body CGL-overexpressing transgenic (CGLTg) mice and wild-type (WT) littermates (C57BL/6J) were subjected to the hindlimb ischemia model (age, 10-12 weeks). Functional recovery was assessed via the treadmill exercise endurance test. Leg perfusion was measured by laser Doppler imaging and vascular endothelial-cadherin immunostaining. To examine the angiogenic potential, aortic ring sprouting assay and postnatal mouse retinal vasculature development studies were performed. Finally, comparative metabolomics analysis, oxidized/reduced nicotinamide adenine dinucleotide (NAD+/NADH) analysis, and quantitative real-time polymerase chain reaction were performed on CGLWT and CGLTg gastrocnemius muscle. Results: The restoration of blood flow occurred more rapidly in CGLTg mice. Compared with the CGLWT mice, the median ± standard deviation running distance and time were increased for the CGLTg mice after femoral artery ligation (159 ± 53 m vs 291 ± 74 m [P < .005] and 17 ± 4 minutes vs 27 ± 5 minutes [P < .05], respectively). Consistently, in the CGLTg ischemic gastrocnemius muscle, the capillary density was increased fourfold (0.05 ± 0.02 vs 0.20 ± 0.12; P < .005). Ex vivo, the endothelial cell (EC) sprouting length was increased in aorta isolated from CGLTg mice, especially when cultured in VEGFA (vascular endothelial growth factor A)-only media (63 ± 2 pixels vs 146 ± 52 pixels; P < .05). Metabolomics analysis demonstrated a higher level of niacinamide, a precursor of NAD+/NADH in the muscle of CGLTg mice (61.4 × 106 ± 5.9 × 106 vs 72.4 ± 7.7 × 106 area under the curve; P < .05). Similarly, the NAD+ salvage pathway gene expression was increased in CGLTg gastrocnemius muscle. Finally, CGL overexpression or supplementation with the NAD+ precursor nicotinamide mononucleotide improved EC migration in vitro (wound closure: control, 35% ± 9%; CGL, 55% ± 11%; nicotinamide mononucleotide, 42% ± 13%; P < .05). Conclusions: Our results have demonstrated that CGL overexpression improves the neovascularization of skeletal muscle on hindlimb ischemia. These effects correlated with changes in the NAD pathway, which improved EC migration.

2.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35328350

RESUMEN

Connexin37 (Cx37) and Cx40 form intercellular channels between endothelial cells (EC), which contribute to the regulation of the functions of vessels. We previously documented the participation of both Cx in developmental angiogenesis and have further shown that loss of Cx40 decreases the growth of different tumors. Here, we report that loss of Cx37 reduces (1) the in vitro proliferation of primary human EC; (2) the vascularization of subcutaneously implanted matrigel plugs in Cx37-/- mice or in WT using matrigel plugs supplemented with a peptide targeting Cx37 channels; (3) tumor angiogenesis; and (4) the growth of TC-1 and B16 tumors, resulting in a longer mice survival. We further document that Cx37 and Cx40 function in a collaborative manner to promote tumor growth, inasmuch as the injection of a peptide targeting Cx40 into Cx37-/- mice decreased the growth of TC-1 tumors to a larger extent than after loss of Cx37. This loss did not alter vessel perfusion, mural cells coverage and tumor hypoxia compared to tumors grown in WT mice. The data show that Cx37 is relevant for the control of EC proliferation and growth in different tumor models, suggesting that it may be a target, alone or in combination with Cx40, in the development of anti-tumoral treatments.


Asunto(s)
Células Endoteliales , Neoplasias , Animales , Proliferación Celular , Conexinas/genética , Células Endoteliales/fisiología , Endotelio Vascular/patología , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología
3.
FASEB J ; 34(6): 8234-8249, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32323401

RESUMEN

Connexin37 (Cx37) forms intercellular channels between endothelial cells (EC), and contributes to coordinate the motor tone of vessels. We investigated the contribution of this protein during physiological angiogenesis. We show that, compared to WT littermates, mice lacking Cx37 (Cx37-/- ) featured (i) a decreased extension of the superficial vascular plexus during the first 4 days after birth; (ii) an increased vascular density at the angiogenic front at P6, due to an increase in the proliferative rate of EC and in the sprouting of the venous compartment, as well as to a somewhat displaced position of tip cells; (iii) a decreased coverage of newly formed arteries and veins by mural cells; (iv) altered ERK-dependent endothelial cells proliferation through the EphB4 signaling pathway, which is involved in the specification of veins and arteries. In vitro studies documented that, in the absence of Cx37, human venous EC (HUVEC) released less platelet-derived growth factor (PDGF) and more Angiopoietin-2, two molecules involved in the recruitment of mural cells. Treatment of mice with DAPT, an inhibitor of the Notch pathway, decreased the expression of Cx37, and partially mimicked in WT retinas, the alterations observed in Cx37-/- mice. Thus, Cx37 contributes to (i) the early angiogenesis of retina, by interacting with the Notch pathway; (ii) the growth and maturation of neo-vessels, by modulating tip, stalk, and mural cells; (iii) the regulation of arteriovenous specification, thus, representing a novel target for treatments of retina diseases.


Asunto(s)
Diferenciación Celular/fisiología , Conexinas/metabolismo , Neovascularización Fisiológica/fisiología , Retina/metabolismo , Retina/fisiología , Animales , Proliferación Celular/fisiología , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiología , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología , Proteína alfa-4 de Unión Comunicante
4.
Arterioscler Thromb Vasc Biol ; 40(4): e87-e104, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32078368

RESUMEN

OBJECTIVE: Impaired ALK1 (activin receptor-like kinase-1)/Endoglin/BMP9 (bone morphogenetic protein 9) signaling predisposes to arteriovenous malformations (AVMs). Activation of SMAD1/5 signaling can be enhanced by shear stress. In the genetic disease hereditary hemorrhagic telangiectasia, which is characterized by arteriovenous malformations, the affected receptors are those involved in the activation of mechanosensitive SMAD1/5 signaling. To elucidate how genetic and mechanical signals interact in AVM development, we sought to identify targets differentially regulated by BMP9 and shear stress. Approach and Results: We identify Cx37 (Connexin37) as a differentially regulated target of ligand-induced and mechanotransduced SMAD1/5 signaling. We show that stimulation of endothelial cells with BMP9 upregulated Cx37, whereas shear stress inhibited this expression. This signaling was SMAD1/5-dependent, and in the absence of SMAD1/5, there was an inversion of the expression pattern. Ablated SMAD1/5 signaling alone caused AVM-like vascular malformations directly connecting the dorsal aorta to the inlet of the heart. In yolk sacs of mouse embryos with an endothelial-specific compound heterozygosity for SMAD1/5, addition of TNFα (tumor necrosis factor-α), which downregulates Cx37, induced development of these direct connections bypassing the yolk sac capillary bed. In wild-type embryos undergoing vascular remodeling, Cx37 was globally expressed by endothelial cells but was absent in regions of enlarging vessels. TNFα and endothelial-specific compound heterozygosity for SMAD1/5 caused ectopic regions lacking Cx37 expression, which correlated to areas of vascular malformations. Mechanistically, loss of Cx37 impairs correct directional migration under flow conditions. CONCLUSIONS: Our data demonstrate that Cx37 expression is differentially regulated by shear stress and SMAD1/5 signaling, and that reduced Cx37 expression is permissive for capillary enlargement into shunts.


Asunto(s)
Malformaciones Arteriovenosas/genética , Conexinas/genética , Regulación hacia Abajo , Mecanotransducción Celular , Proteína Smad1/genética , Proteína Smad5/genética , Regulación hacia Arriba , Receptores de Activinas Tipo II/metabolismo , Animales , Malformaciones Arteriovenosas/metabolismo , Malformaciones Arteriovenosas/patología , Capilares/patología , Células Cultivadas , Conexinas/metabolismo , Embrión de Mamíferos , Endoglina/metabolismo , Células Endoteliales/metabolismo , Femenino , Factor 2 de Diferenciación de Crecimiento/metabolismo , Humanos , Masculino , Ratones Noqueados , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Remodelación Vascular , Proteína alfa-4 de Unión Comunicante
5.
Arterioscler Thromb Vasc Biol ; 37(11): 2136-2146, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28982669

RESUMEN

OBJECTIVE: Cx40 (Connexin40) forms intercellular channels that coordinate the electric conduction in the heart and the vasomotor tone in large vessels. The protein was shown to regulate tumoral angiogenesis; however, whether Cx40 also contributes to physiological angiogenesis is still unknown. APPROACH AND RESULTS: Here, we show that Cx40 contributes to physiological angiogenesis. Genetic deletion of Cx40 leads to a reduction in vascular growth and capillary density in the neovascularization model of the mouse neonatal retina. At the angiogenic front, vessel sprouting is reduced, and the mural cells recruited along the sprouts display an altered phenotype. These alterations can be attributed to disturbed endothelial cell functions as selective reexpression of Cx40 in these cells restores normal angiogenesis. In vitro, targeting Cx40 in microvascular endothelial cells, by silencing its expression or by blocking gap junction channels, decreases their proliferation. Moreover, loss of Cx40 in these cells also increases their release of PDGF (platelet-derived growth factor) and promotes the chemoattraction of mural cells. In vivo, an intravitreal injection of a Cx40 inhibitory peptide, phenocopies the loss of Cx40 in the retinal vasculature of wild-type mice. CONCLUSIONS: Collectively, our data show that endothelial Cx40 contributes to the early stages of physiological angiogenesis in the developing retina, by regulating vessel growth and maturation. Cx40 thus represents a novel therapeutic target for treating pathological ocular angiogenesis.


Asunto(s)
Capilares/metabolismo , Conexinas/metabolismo , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Vasos Retinianos/metabolismo , Animales , Animales Recién Nacidos , Capilares/crecimiento & desarrollo , Línea Celular , Proliferación Celular , Quimiotaxis , Conexinas/deficiencia , Conexinas/genética , Regulación hacia Abajo , Uniones Comunicantes/metabolismo , Genotipo , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Interferencia de ARN , Vasos Retinianos/crecimiento & desarrollo , Transducción de Señal , Transfección , Proteína alfa-5 de Unión Comunicante
6.
ACS Appl Mater Interfaces ; 8(38): 25051-9, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27598554

RESUMEN

A hyaluronic acid (HA)-based extracellular matrix (ECM) platform with independently tunable stiffness and density of cell-adhesive peptide (RGD, arginine-glycine-aspartic acid) that mimics key biochemical and mechanical features of brain matrix has been designed. We demonstrated here its utility in elucidating ECM regulation of neural progenitor cell behavior and neurite outgrowth. The analysis of neurite outgrowth in 3-D by two-photon microscopy showed several important results in the development of these hydrogels. First, the ability of neurites to extend deeply into these soft HA-based matrices even in the absence of cell-adhesive ligand further confirms the potential of HA hydrogels for central nervous system (CNS) regeneration. Second, the behavior of hippocampal neural progenitor cells differed markedly between the hydrogels with a storage modulus of 400 Pa and those with a modulus of 800 Pa. We observed an increased outgrowth and density of neurites in the softest hydrogels (G' = 400 Pa). Interestingly, cells seeded on the surface of the hydrogels functionalized with the RGD ligand experienced an optimum in neurite outgrowth as a function of ligand density. Surprinsingly, neurites preferentially progressed inside the gels in a vertical direction, suggesting that outgrowth is directed by the hydrogel structure. This work may provide design principles for the development of hydrogels to facilitate neuronal regeneration in the adult brain.


Asunto(s)
Ácido Hialurónico/química , Matriz Extracelular , Hidrogeles , Neuritas , Proyección Neuronal
7.
J Neurooncol ; 128(1): 1-8, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26961772

RESUMEN

Surgery is the first line therapy for glioma. However, glioma recurs in 90 % of the patients in the resection margin. The impact of surgical brain injury (SBI) on glioma recurrence is largely overlooked. Herein, we review some of the mechanisms involved in tissue repair that may impact glioma recurrence at the resection margin. Many processes or molecules involved in tissue repair after brain injury are also critical for glioma growth. They include a wide array of secreted growth factors, cytokines and transcription factors including NFКB and STAT3 which in turn activate proliferative and anti-apoptotic genes and processes such as angiogenesis and inflammation. Because some residual glioma cells always remain in the tumor resection margin, there are now compelling arguments to suggest that some aspects of the brain tissue response to SBI can also participate to glioma recurrence at the resection margin. Brain tissue response to SBI recruits angiogenesis and inflammation that precede and then follow tumor recurrence at the resection margin. The healing response to SBI is double edged, as inflammation is involved in regeneration and healing, and has both pro- and anti-tumorigenic functions. A promising therapeutic approach is to normalize and re-educate the molecular and cellular responses at the resection margin to promote anti-tumorigenic processes involved in healing while inhibiting pro-tumorigenic activities. Manipulation of the inflammatory response to SBI to prevent local recurrence could also enhance the efficacy of other therapies such as immunotherapy. However, our current knowledge is far from sufficient to achieve this goal. Acknowledging, understanding and manipulating the double-edged role played by SBI in glioma recurrence is surely challenging, but it cannot be longer delayed.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirugía , Encéfalo/metabolismo , Encéfalo/cirugía , Glioma/metabolismo , Glioma/cirugía , Humanos , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/prevención & control , Procedimientos Neuroquirúrgicos/efectos adversos
8.
Acta Biomater ; 10(11): 4750-4758, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25110287

RESUMEN

Delivery systems for macrophages are particularly attractive since these phagocytic cells play a important role in immunological and inflammatory responses, also acting as host cells for microorganisms that are involved in deadly infectious diseases, such as leishmaniasis. Hyaluronic acid (HA) is specifically recognized by macrophages that are known to express HA receptors. Therefore, in this study, we focused on HA-based nanogels as drug carriers for these cells. The drug delivery was validated in an in vivo study on mice using intravital two-photon laser scanning microscopy. HA derivatives were modified with a biocompatible oligo(ethylene glycol)-based thermoresponsive polymer to form nanogels. These HA conjugates were readily prepared by varying the molar mass of initial HA and the degree of substitution via radical-mediated thiol-ene chemistry in aqueous solution. The derivatives were shown to self-assemble into spherical gel particles with diameters ranging from 150 to 214 nm above 37 °C. A poorly water-soluble two-photon dye was successfully loaded into the nanogels during this self-assembly process. In vitro cellular uptake tests using a RAW 264.7 murine macrophage cell line showed successful intracellular delivery of the hydrophobic dye. After intravenous injection in mice, the nanogels circulated freely in the blood but were rapidly phagocytized within 13 min by circulating macrophages and stored in the liver and spleen, as observed by two-photon microscopy. Benefit can be thus expected in using such a delivery system for the liver and spleen macrophage-associated diseases.


Asunto(s)
Ácido Hialurónico/química , Interacciones Hidrofóbicas e Hidrofílicas , Macrófagos/metabolismo , Polietilenglicoles/química , Polietileneimina/química , Temperatura , Animales , Línea Celular , Portadores de Fármacos , Endocitosis , Fluorescencia , Macrófagos/citología , Ratones , Nanogeles , Tamaño de la Partícula , Fotones , Espectroscopía de Protones por Resonancia Magnética
9.
Microvasc Res ; 84(2): 188-204, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22705361

RESUMEN

A computational model is potentially a powerful tool to apprehend complex phenomena like solid tumour growth and to predict the outcome of therapies. To that end, the confrontation of the model with experiments is essential to validate this tool. In this study, we develop a computational model specifically dedicated to the interpretation of tumour growth as observed in a mouse model with a dorsal skinfold chamber. Observation of the skin vasculature at the dorsal window scale shows a sparse network of a few main vessels of several hundreds micrometers in diameter. However observation at a smaller scale reveals the presence of a dense and regular interconnected network of capillaries about ten times smaller. We conveniently designate this structure as the submicrovascular network (SMVN).(1) The question that we wish to answer concerns the necessity of explicitly taking into account the SMVN in the computational model to describe the tumour evolution observed in the dorsal chamber. For that, simulations of tumour growth realised with and without the SMVN are compared and lead to two distinct scenarios. Parameters that are known to strongly influence the tumour evolution are then tested in the two cases to determine to which extent those parameters can be used to compensate the observed differences between these scenarios. Explicit modelling of the smallest vessels appears mandatory although not necessarily under the form of a regular grid. A compromise between the two investigated cases can thus be reached.


Asunto(s)
Capilares/patología , Proliferación Celular , Simulación por Computador , Glioma/irrigación sanguínea , Glioma/patología , Modelos Cardiovasculares , Piel/irrigación sanguínea , Animales , Apoptosis , Capilares/metabolismo , Hipoxia de la Célula , Ratones , Ratones Desnudos , Necrosis , Neovascularización Patológica , Oxígeno/metabolismo , Reproducibilidad de los Resultados , Factores de Tiempo , Carga Tumoral , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA