Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cells ; 10(1)2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379312

RESUMEN

A multimodal therapeutic approach involving radiotherapy is required when treating head and neck squamous cell carcinoma. However, radiotherapy is restricted due to its high risk for damages to the surrounding healthy tissue of the treated area. Tissue regeneration and wound healing is promoted by the survival and regenerative capacities of tissue-resident or invading stem cells. Mesenchymal stem cells (MSCs) exhibit a promising therapeutic potential in the field of cell-based tissue engineering and regenerative medicine due to their immunomodulatory properties and differentiation capacity. However, the generation of MSCs for therapeutic applications is still a major challenge. We aimed to produce highly homogeneous induced pluripotent stem cell-derived mesenchymal stem cells (iP-MSCs) in an autologous manner from initially isolated human mucosa mesenchymal stem cells (mMSCs) of the upper respiratory tract. Therefore, mMSCs were reprogrammed into induced pluripotent stem cells (iPSCs) by non-integrative chromosomal technologies and differentiated into corresponding iP-MSCs. We demonstrated that mMSCs and iP-MSCs show similar cell characteristics in terms of morphology, clonogenic potential, differentiation, and surface phenotype. Moreover, iP-MSCs demonstrated related immunosuppressive capacity as mMSCs including the secretion of cytokines, and T cell inhibition. Therefore, generating iP-MSCs in an autologous manner may be a novel personalized treatment option in regenerative medicine.


Asunto(s)
Neoplasias de Cabeza y Cuello/terapia , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Medicina Regenerativa/métodos , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Ingeniería de Tejidos/métodos , Adulto , Anciano , Células Cultivadas , Femenino , Humanos , Inmunomodulación , Masculino , Adulto Joven
2.
Stem Cells Int ; 2019: 2181437, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31467559

RESUMEN

Induced pluripotent stem cells (iPSCs) provide a unique opportunity for generation of patient-specific cells for use in translational purposes. We aimed to compare iPSCs generated by different reprogramming methods regarding their reprogramming efficiency, pluripotency capacity, and the possibility to use high-throughput PCR-based methods for detection of human pathogenic viruses. iPSCs from skin fibroblasts (FB), peripheral blood mononuclear cells (PBMCs), or mesenchymal stem cells (MSCs) were generated by using three different reprogramming systems including chromosomal integrating and nonintegrating methods. Reprogramming efficiencies were in accordance with the literature, indicating that the parental cell type and the reprogramming method play a major role for the reprogramming efficiencies (FB: STEMCCA: 1.30 ± 0.18, Sendai virus: 1.37 ± 0.01, and episomal plasmids: 0.04 ± 0.02; PBMCs: Sendai virus: 0.002 ± 0.001, episomal plasmids: 0) but result in the same characteristics of pluripotency. We found the highest reprogramming efficiencies for MSC with 3.32 ± 1.2 by using episomal plasmids. Since GMP standard working procedures and screening units need virus contamination-free cell lines, we studied HIV-1 contamination in the generated iPSCs. We used the high-throughput cobas® 6800/8800 system, which is normally used for detection of HIV-1 in plasma of patients, and found that footprint-free reprogramming methods as episomal plasmids and Sendai virus are useful for the described virus detection method. This fast, cost-effective, robust, and reliable assay demonstrates the feasibility to use high-throughput PCR-based methods for detection of human pathogenic viruses in ps-iPSC lines that were generated with nongenome integrating reprogramming methods.

3.
Head Neck ; 41(9): 2892-2903, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31017352

RESUMEN

BACKGROUND: Tissue-resident mesenchymal stem cells (MSCs) possess the ability to migrate to areas of inflammation and promote the regeneration of damaged tissue. However, it remains unclear how radiation influences this capacity of MSC in the head and neck region. METHODS: Two types of MSCs of the head and neck region (mucosa [mMSC] and parotid gland [pMSC]) were isolated, cultured and exposed to single radiation dosages of 2 Gy/day up to 10 days. Effects on morphology, colony forming ability, apoptosis, chemokine receptor expression, cytokine secretion, and cell migration were analyzed. RESULTS: Although MSC preserved MSC-specific regenerative abilities and immunomodulatory properties following irradiation in our in vitro model, we found a deleterious impact on colony forming ability, especially in pMSC. CONCLUSIONS: MSC exhibited robustness and activation upon radiation for the support of tissue regeneration, but lost their potential to replicate, thus possibly leading to depletion of the local MSC-pool after irradiation.


Asunto(s)
Células Madre Mesenquimatosas/efectos de la radiación , Mucosa Nasal/citología , Glándula Parótida/citología , Dosificación Radioterapéutica , Adulto , Anciano , Movimiento Celular/efectos de la radiación , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Persona de Mediana Edad , Receptores de Quimiocina/metabolismo , Regeneración , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA