Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 9: 826746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265640

RESUMEN

The genome of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19), has been sequenced at an unprecedented scale leading to a tremendous amount of viral genome sequencing data. To assist in tracing infection pathways and design preventive strategies, a deep understanding of the viral genetic diversity landscape is needed. We present here a set of genomic surveillance tools from population genetics which can be used to better understand the evolution of this virus in humans. To illustrate the utility of this toolbox, we detail an in depth analysis of the genetic diversity of SARS-CoV-2 in first year of the COVID-19 pandemic. We analyzed 329,854 high-quality consensus sequences published in the GISAID database during the pre-vaccination phase. We demonstrate that, compared to standard phylogenetic approaches, haplotype networks can be computed efficiently on much larger datasets. This approach enables real-time lineage identification, a clear description of the relationship between variants of concern, and efficient detection of recurrent mutations. Furthermore, time series change of Tajima's D by haplotype provides a powerful metric of lineage expansion. Finally, principal component analysis (PCA) highlights key steps in variant emergence and facilitates the visualization of genomic variation in the context of SARS-CoV-2 diversity. The computational framework presented here is simple to implement and insightful for real-time genomic surveillance of SARS-CoV-2 and could be applied to any pathogen that threatens the health of populations of humans and other organisms.

2.
iScience ; 25(2): 103768, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35141507

RESUMEN

Understanding the molecular principles that govern the composition of the MHC-I immunopeptidome across different primary tissues is fundamentally important to predict how T cells respond in different contexts in vivo. Here, we performed a global analysis of the MHC-I immunopeptidome from 29 to 19 primary human and mouse tissues, respectively. First, we observed that different HLA-A, HLA-B, and HLA-C allotypes do not contribute evenly to the global composition of the MHC-I immunopeptidome across multiple human tissues. Second, we found that tissue-specific and housekeeping MHC-I peptides share very distinct properties. Third, we discovered that proteins that are evolutionarily hyperconserved represent the primary source of the MHC-I immunopeptidome at the organism-wide scale. Fourth, we uncovered new components of the antigen processing and presentation network, including the carboxypeptidases CPE, CNDP1/2, and CPVL. Together, this study opens up new avenues toward a system-wide understanding of antigen presentation in vivo across mammalian species.

3.
Cell Syst ; 13(2): 143-157.e3, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34637888

RESUMEN

The rapid, global dispersion of SARS-CoV-2 has led to the emergence of a diverse range of variants. Here, we describe how the mutational landscape of SARS-CoV-2 has shaped HLA-restricted T cell immunity at the population level during the first year of the pandemic. We analyzed a total of 330,246 high-quality SARS-CoV-2 genome assemblies, sampled across 143 countries and all major continents from December 2019 to December 2020 before mass vaccination or the rise of the Delta variant. We observed that proline residues are preferentially removed from the proteome of prevalent mutants, leading to a predicted global loss of SARS-CoV-2 T cell epitopes in individuals expressing HLA-B alleles of the B7 supertype family; this is largely driven by a dominant C-to-U mutation type at the RNA level. These results indicate that B7-supertype-associated epitopes, including the most immunodominant ones, were more likely to escape CD8+ T cell immunosurveillance during the first year of the pandemic.


Asunto(s)
COVID-19 , Epítopos de Linfocito T , SARS-CoV-2 , COVID-19/virología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Humanos , Mutación , SARS-CoV-2/genética
4.
Mol Cell Proteomics ; 21(1): 100178, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798331

RESUMEN

MS-based immunopeptidomics is maturing into an automatized and high-throughput technology, producing small- to large-scale datasets of clinically relevant major histocompatibility complex (MHC) class I-associated and class II-associated peptides. Consequently, the development of quality control (QC) and quality assurance systems capable of detecting sample and/or measurement issues is important for instrument operators and scientists in charge of downstream data interpretation. Here, we created MhcVizPipe (MVP), a semiautomated QC software tool that enables rapid and simultaneous assessment of multiple MHC class I and II immunopeptidomic datasets generated by MS, including datasets generated from large sample cohorts. In essence, MVP provides a rapid and consolidated view of sample quality, composition, and MHC specificity to greatly accelerate the "pass-fail" QC decision-making process toward data interpretation. MVP parallelizes the use of well-established immunopeptidomic algorithms (NetMHCpan, NetMHCIIpan, and GibbsCluster) and rapidly generates organized and easy-to-understand reports in HTML format. The reports are fully portable and can be viewed on any computer with a modern web browser. MVP is intuitive to use and will find utility in any specialized immunopeptidomic laboratory and proteomics core facility that provides immunopeptidomic services to the community.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Programas Informáticos , Péptidos , Proteómica , Control de Calidad
5.
STAR Protoc ; 2(4): 100875, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34746858

RESUMEN

Identification of proteasomal spliced peptides (PSPs) by mass spectrometry (MS) is not possible with traditional search engines. Here, we provide a protocol for running RHybridFinder (RHF), an R package for the computational inference of putative PSPs detected by MS. RHF extracts high confidence scored de novo sequenced peptides identified by PEAKS software. Those peptides are then matched to protein databases to infer cis- or trans-spliced major histocompatibility complex (MHC)-associated peptides. RHF is relatively fast and straightforward. PSPs have to be validated experimentally. For complete details on the use and execution of the original protocol, please refer to Faridi et al. (2018).


Asunto(s)
Péptidos , Complejo de la Endopetidasa Proteasomal , Proteómica/métodos , Programas Informáticos , Bases de Datos de Proteínas , Epítopos/genética , Humanos , Espectrometría de Masas , Péptidos/química , Péptidos/genética , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética
6.
Methods Mol Biol ; 2263: 465-485, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33877613

RESUMEN

Cellular membranes are a central hub for initiation and execution of many signaling processes. Integral to these processes being accomplished appropriately is the highly controlled recruitment and assembly of proteins at membrane surfaces. The study of the molecular mechanisms that mediate protein-membrane interactions can be facilitated by utilizing hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS is a robust analytical technique that allows for the measurement of the exchange rate of backbone amide hydrogens with solvent to make inferences about protein structure and conformation. This chapter discusses the use of HDX-MS as a tool to study the conformational changes that occur within peripheral membrane proteins upon association with membrane. Particular reference will be made to the analysis of the protein kinase Akt and its activation upon binding phosphatidylinositol (3,4,5) tris-phosphate (PIP3)-containing membranes to illustrate specific methodological principles.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fenómenos Biofísicos , Membrana Celular/química , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Simulación de Dinámica Molecular , Fosfatos de Fosfatidilinositol/química , Unión Proteica , Conformación Proteica , Proteómica
7.
J Biol Chem ; 294(18): 7488-7502, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30890560

RESUMEN

Neutral sphingomyelinase 2 (nSMase2) produces the bioactive lipid ceramide and has important roles in neurodegeneration, cancer, and exosome formation. Although nSMase2 has low basal activity, it is fully activated by phosphatidylserine (PS). Previous work showed that interdomain interactions within nSMase2 are needed for PS activation. Here, we use multiple approaches, including small angle X-ray scattering, hydrogen-deuterium exchange-MS, circular dichroism and thermal shift assays, and membrane yeast two-hybrid assays, to define the mechanism mediating this interdomain interactions within nSMase2. In contrast to what we previously assumed, we demonstrate that PS binding at the N-terminal and juxtamembrane regions of nSMase2 rather acts as a conformational switch leading to interdomain interactions that are critical to enzyme activation. Our work assigns a unique function for a class of linkers of lipid-activated, membrane-associated proteins. It indicates that the linker actively participates in the activation mechanism via intramolecular interactions, unlike the canonical linkers that typically aid protein dimerization or localization.


Asunto(s)
Esfingomielina Fosfodiesterasa/metabolismo , Regulación Alostérica , Aminoácidos/química , Dominio Catalítico , Activación Enzimática , Humanos , Hidroxiurea/farmacología , Mutación , Conformación Proteica , Saccharomyces cerevisiae/efectos de los fármacos , Dispersión del Ángulo Pequeño , Esfingomielina Fosfodiesterasa/química , Esfingomielina Fosfodiesterasa/genética , Difracción de Rayos X
8.
J Biol Chem ; 294(12): 4621-4633, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30659094

RESUMEN

Phosphoinositide 3-kinase ß (PI3Kß) is regulated by receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and small GTPases such as Rac1 and Rab5. Our lab previously identified two residues (Gln596 and Ile597) in the helical domain of the catalytic subunit (p110ß) of PI3Kß whose mutation disrupts binding to Rab5. To better define the Rab5-p110ß interface, we performed alanine-scanning mutagenesis and analyzed Rab5 binding with an in vitro pulldown assay with GST-Rab5GTP Of the 35 p110ß helical domain mutants assayed, 11 disrupted binding to Rab5 without affecting Rac1 binding, basal lipid kinase activity, or Gßγ-stimulated kinase activity. These mutants defined the Rab5-binding interface within p110ß as consisting of two perpendicular α-helices in the helical domain that are adjacent to the initially identified Gln596 and Ile597 residues. Analysis of the Rab5-PI3Kß interaction by hydrogen-deuterium exchange MS identified p110ß peptides that overlap with these helices; no interactions were detected between Rab5 and other regions of p110ß or p85α. Similarly, the binding of Rab5 to isolated p85α could not be detected, and mutations in the Ras-binding domain (RBD) of p110ß had no effect on Rab5 binding. Whereas soluble Rab5 did not affect PI3Kß activity in vitro, the interaction of these two proteins was critical for chemotaxis, invasion, and gelatin degradation by breast cancer cells. Our results define a single, discrete Rab5-binding site in the p110ß helical domain, which may be useful for generating inhibitors to better define the physiological role of Rab5-PI3Kß coupling in vivo.


Asunto(s)
Neoplasias de la Mama/patología , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Sitios de Unión , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Quimiotaxis , Gelatina/metabolismo , Células HEK293 , Humanos , Espectrometría de Masas/métodos , Mutación , Fosfatidilinositol 3-Quinasa/genética , Unión Proteica
9.
Proc Natl Acad Sci U S A ; 115(45): E10548-E10555, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348763

RESUMEN

Parasites of the phylum Apicomplexa are responsible for significant morbidity and mortality on a global scale. Central to the virulence of these pathogens are the phylum-specific, unconventional class XIV myosins that power the essential processes of parasite motility and host cell invasion. Notably, class XIV myosins differ from human myosins in key functional regions, yet they are capable of fast movement along actin filaments with kinetics rivaling previously studied myosins. Toward establishing a detailed molecular mechanism of class XIV motility, we determined the 2.6-Å resolution crystal structure of the Toxoplasma gondii MyoA (TgMyoA) motor domain. Structural analysis reveals intriguing strategies for force transduction and chemomechanical coupling that rely on a divergent SH1/SH2 region, the class-defining "HYAG"-site polymorphism, and the actin-binding surface. In vitro motility assays and hydrogen-deuterium exchange coupled with MS further reveal the mechanistic underpinnings of phosphorylation-dependent modulation of TgMyoA motility whereby localized regions of increased stability and order correlate with enhanced motility. Analysis of solvent-accessible pockets reveals striking differences between apicomplexan class XIV and human myosins. Extending these analyses to high-confidence homology models of Plasmodium and Cryptosporidium MyoA motor domains supports the intriguing potential of designing class-specific, yet broadly active, apicomplexan myosin inhibitors. The successful expression of the functional TgMyoA complex combined with our crystal structure of the motor domain provides a strong foundation in support of detailed structure-function studies and enables the development of small-molecule inhibitors targeting these devastating global pathogens.


Asunto(s)
Miosina Tipo IIA no Muscular/química , Toxoplasma/metabolismo , Secuencia de Aminoácidos , Antiprotozoarios/química , Antiprotozoarios/farmacología , Sitios de Unión , Diseño de Fármacos , Imitación Molecular , Mutación , Miosina Tipo IIA no Muscular/antagonistas & inhibidores , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Homología de Secuencia de Aminoácido , Toxoplasma/efectos de los fármacos
10.
Nat Commun ; 9(1): 3772, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30217979

RESUMEN

The GTPase Rab11 plays key roles in receptor recycling, oogenesis, autophagosome formation, and ciliogenesis. However, investigating Rab11 regulation has been hindered by limited molecular detail describing activation by cognate guanine nucleotide exchange factors (GEFs). Here, we present the structure of Rab11 bound to the GEF SH3BP5, along with detailed characterization of Rab-GEF specificity. The structure of SH3BP5 shows a coiled-coil architecture that mediates exchange through a unique Rab-GEF interaction. Furthermore, it reveals a rearrangement of the switch I region of Rab11 compared with solved Rab-GEF structures, with a constrained conformation when bound to SH3BP5. Mutation of switch I provides insights into the molecular determinants that allow for Rab11 selectivity over evolutionarily similar Rab GTPases present on Rab11-positive organelles. Moreover, we show that GEF-deficient mutants of SH3BP5 show greatly decreased Rab11 activation in cellular assays of active Rab11. Overall, our results give molecular insight into Rab11 regulation, and how Rab-GEF specificity is achieved.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Intercambio de Guanina Nucleótido/ultraestructura , Proteínas de Unión al GTP rab/ultraestructura , Cristalografía , Escherichia coli , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Estructura Molecular , Mutación , Unión Proteica , Proteínas de Unión al GTP rab/metabolismo
11.
J Mol Biol ; 430(18 Pt B): 3129-3142, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30031006

RESUMEN

Phosphatidylinositol 4-kinase IIIα (PI4KIIIα) is the lipid kinase primarily responsible for generating the lipid phosphatidylinositol 4-phosphate (PI4P) at the plasma membrane, which acts as the substrate for generation of the signaling lipids PIP2 and PIP3. PI4KIIIα forms a large heterotrimeric complex with two regulatory partners, TTC7 and FAM126. We describe using an integrated electron microscopy and hydrogen-deuterium exchange mass spectrometry (HDX-MS) approach to probe the architecture and dynamics of the complex of PI4KIIIα/TTC7/FAM126. HDX-MS reveals that the majority of the PI4KIIIα sequence was protected from exchange in short deuterium pulse experiments, suggesting presence of secondary structure, even in putative unstructured regions. Negative stain electron microscopy reveals the shape and architecture of the full-length complex, revealing an overall dimer of PI4KIIIα/TTC7/FAM126 trimers. HDX-MS reveals conformational changes in the TTC7/FAM126 complex upon binding PI4KIIIα, including both at the direct TTC7-PI4KIIIα interface and at the putative membrane binding surface. Finally, HDX-MS experiments of PI4KIIIα bound to the highly potent and selective inhibitor GSK-A1 compared to that bound to the non-specific inhibitor PIK93 revealed substantial conformational changes throughout an extended region of the kinase domain. Many of these changes were distant from the putative inhibitor binding site, showing a large degree of allosteric conformational changes that occur upon inhibitor binding. Overall, our results reveal novel insight into the regulation of PI4KIIIα by its regulatory proteins TTC7/FAM126, as well as additional dynamic information on how selective inhibition of PI4KIIIα is achieved.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas/metabolismo , 1-Fosfatidilinositol 4-Quinasa/química , Regulación Alostérica , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteínas/química , Proteínas Recombinantes
12.
Proc Natl Acad Sci U S A ; 115(17): E3940-E3949, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29632185

RESUMEN

The protein kinase Akt controls myriad signaling processes in cells, ranging from growth and proliferation to differentiation and metabolism. Akt is activated by a combination of binding to the lipid second messenger PI(3,4,5)P3 and its subsequent phosphorylation by phosphoinositide-dependent kinase 1 and mechanistic target of rapamycin complex 2. The relative contributions of these mechanisms to Akt activity and signaling have hitherto not been understood. Here, we show that phosphorylation and activation by membrane binding are mutually interdependent. Moreover, the converse is also true: Akt is more rapidly dephosphorylated in the absence of PIP3, an autoinhibitory process driven by the interaction of its PH and kinase domains. We present biophysical evidence for the conformational changes in Akt that accompany its activation on membranes, show that Akt is robustly autoinhibited in the absence of PIP3 irrespective of its phosphorylation, and map the autoinhibitory PH-kinase interface. Finally, we present a model for the activation and inactivation of Akt by an ordered series of membrane binding, phosphorylation, dissociation, and dephosphorylation events.


Asunto(s)
Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Activación Enzimática , Humanos , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/genética , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/genética , Fosforilación , Dominios Proteicos , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA