Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Metabolism ; 150: 155736, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37967646

RESUMEN

BACKGROUND: Epidemiological evidence links the proprotein convertase subtilisin/kexin 7 (PCSK7) to triglyceride (TG) metabolism. We associated the known PCSK7 gain-of-function non-coding SNP rs236918 with higher levels of plasma apolipoprotein B (apoB) and the loss-of-function coding variant p.Pro777Leu (SNP rs201598301) with lower apoB and TG. Herein, we aimed to unravel the in vivo role of liver PCSK7. METHODS: We biochemically defined the functional role of PCSK7 in lipid metabolism using hepatic cell lines and Pcsk7-/- mice. Our findings were validated following subcutaneous administration of hepatocyte-targeted N-acetylgalactosamine (GalNAc)-antisense oligonucleotides (ASOs) against Pcsk7. RESULTS: Independent of its proteolytic activity, membrane-bound PCSK7 binds apoB100 in the endoplasmic reticulum and enhances its secretion. Mechanistically, the loss of PCSK7/Pcsk7 leads to apoB100 degradation, triggering an unfolded protein response, autophagy, and ß-oxidation, eventually reducing lipid accumulation in hepatocytes. Non-alcoholic fatty liver disease (NAFLD) was induced by a 12-week high fat/fructose/cholesterol diet in wild type (WT) and Pcsk7-/- mice that were then allowed to recover on a 4-week control diet. Pcsk7-/- mice recovered more effectively than WT mice from all NAFLD-related liver phenotypes. Finally, subcutaneous administration of GalNAc-ASOs targeting hepatic Pcsk7 to WT mice validated the above results. CONCLUSIONS: Our data reveal hepatic PCSK7 as one of the major regulators of apoB, and its absence reduces apoB secretion from hepatocytes favoring its ubiquitination and degradation by the proteasome. This results in a cascade of events, eventually reducing hepatic lipid accumulation, thus supporting the notion of silencing PCSK7 mRNA in hepatocytes for targeting NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Subtilisina/metabolismo , Triglicéridos/metabolismo , Hígado/metabolismo , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Proproteína Convertasas/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo
2.
FEBS J ; 287(16): 3565-3578, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31945259

RESUMEN

The locus of the human proprotein convertase subtilisin-kexin type-7 (PC7) gene (PCSK7) is on chromosome 11q23.3 close to the gene cluster APOA5/APOA4/APOC3/APOA1, a region implicated in the regulation of lipoprotein metabolism. A GWAS reported the association of PCSK7 SNPs with plasma triglyceride (TG), and exome sequencing of African Americans revealed the association of a low-frequency coding variant of PC7 (R504H; SNP rs142953140) with a ~ 30% TG reduction. Another PCSK7 SNP rs508487 is in linkage disequilibrium with a promoter variant of the liver-derived apolipoprotein A-V (apoA-V), an indirect activator of the lipoprotein lipase (LpL), and is associated with elevated TG levels. We thus hypothesized that PC7 regulates the levels/activity of apoA-V. Studies in the human hepatic cell line HuH7 revealed that wild-type (WT) PC7 and its endoplasmic reticulum (ER)-retained forms bind to and enhance the degradation of human apoA-V in acidic lysosomes in a nonenzymatic fashion. PC7-induced degradation of apoA-V is inhibited by bafilomycin A1 and the alkalinizing agents: chloroquine and NH4 Cl. Thus, the PC7-induced apoA-V degradation implicates an ER-lysosomal communication inhibited by bafilomycin A1. In vitro, the natural R504H mutant enhances PC7 Ser505 phosphorylation at the structurally exposed Ser-X-Glu507 motif recognized by the secretory kinase Fam20C. Co-expression of the phosphomimetic PC7-S505E with apoA-V resulted in lower degradation compared to WT, suggesting that Ser505 phosphorylation of PC7 lowers TG levels via reduced apoA-V degradation. In agreement, in Pcsk7-/- mice fed high-fat diet, plasma apoA-V levels and adipocyte LpL activity are increased, providing an in vivo mechanistic link for a role of liver PC7 in enhanced TG storage in adipocytes.


Asunto(s)
Apolipoproteína A-V/metabolismo , Hígado/metabolismo , Subtilisinas/genética , Triglicéridos/metabolismo , Animales , Apolipoproteína A-V/sangre , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Hepatocitos/metabolismo , Humanos , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Polimorfismo de Nucleótido Simple , Subtilisinas/metabolismo , Triglicéridos/sangre , Secuenciación del Exoma/métodos
3.
Arterioscler Thromb Vasc Biol ; 39(10): 1996-2013, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31553664

RESUMEN

OBJECTIVE: PCSK9 (proprotein convertase subtilisin-kexin 9) enhances the degradation of the LDLR (low-density lipoprotein receptor) in endosomes/lysosomes. This study aimed to determine the sites of PCSK9 phosphorylation at Ser-residues and the consequences of such posttranslational modification on the secretion and activity of PCSK9 on the LDLR. Approach and Results: Fam20C (family with sequence similarity 20, member C) phosphorylates serines in secretory proteins containing the motif S-X-E/phospho-Ser, including the cholesterol-regulating PCSK9. In situ hybridization of Fam20C mRNA during development and in adult mice revealed a wide tissue distribution, including liver, but not small intestine. Here, we show that Fam20C phosphorylates PCSK9 at Serines 47, 666, 668, and 688. In hepatocytes, phosphorylation enhances PCSK9 secretion and maximizes its induced degradation of the LDLR via the extracellular and intracellular pathways. Replacing any of the 4 Ser by the phosphomimetic Glu or Asp enhanced PCSK9 activity only when the other sites are phosphorylated, whereas Ala substitutions reduced it, as evidenced by Western blotting, Elisa, and LDLR-immunolabeling. This newly uncovered PCSK9/LDLR regulation mechanism refines our understanding of the implication of global PCSK9 phosphorylation in the modulation of LDL-cholesterol and rationalizes the consequence of natural mutations, for example, S668R and E670G. Finally, the relationship of Ser-phosphorylation to the implication of PCSK9 in regulating LDL-cholesterol in the neurological Fragile X-syndrome disorder was investigated. CONCLUSIONS: Ser-phosphorylation of PCSK9 maximizes both its secretion and activity on the LDLR. Mass spectrometric approaches to measure such modifications were developed and applied to quantify the levels of bioactive PCSK9 in human plasma under normal and pathological conditions.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de la Matriz Extracelular/genética , Regulación de la Expresión Génica , Hiperlipoproteinemia Tipo II/genética , Proproteína Convertasa 9/metabolismo , Receptores de LDL/genética , Animales , Western Blotting , Células Cultivadas , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Hiperlipoproteinemia Tipo II/fisiopatología , Hibridación in Situ/métodos , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Fosforilación/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Receptores de LDL/metabolismo , Sensibilidad y Especificidad
4.
Cell Death Differ ; 26(10): 1942-1954, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30683917

RESUMEN

HIV-associated neurocognitive disorders (HAND) is a syndrome defined by neurocognitive deficits that are driven by viral neurotoxins, cytokines, free radicals, and proteases expressed in the brain. This neurological disease has also been linked to activation of Protease-Activated Receptors 1 and 2 (PAR1,2). These receptors are highly expressed in the central nervous system and are upregulated in HAND. Secretory basic-amino-acid-specific Proprotein Convertases (PCs), which cleave precursor proteins at basic residues, are also induced in HAND. They are vital for many biological processes including HIV-1 entry into cells. The cytoprotective role of Furin, PC5, and PACE4 has been linked to the presence of a potential PC-cleavage site R41XXXXR46↓ in PAR1. Furthermore, Furin binds PAR1 and both are trapped in the trans-Golgi-network (TGN) as inactive proteins, likely due to the intermediary trafficking role of phospho-Furin acidic cluster sorting protein 1 (PACS1). Nothing is known about PAR2 and its possible recognition by PCs at its putative R31XXXXR36↓ processing site. The present study implicates PACS1 in the retrograde trafficking of PAR1 to the TGN and demonstrates that the cytosolic extreme C-terminal tail of PAR1 contains an acidic phosphorylatable PACS1-sensitive domain. We further show the requirement of Asn47 in PAR1 for its Furin-dependent TGN localization. Our data revealed that Furin is the only convertase that efficiently cleaves PAR2 at Arg36↓. N-glycosylation of PAR2 at Asn30 reduces the efficacy, but enhances selectivity of the Furin cleavage. Finally, in co-cultures comprised of human neuroblastoma SK-N-SH cells (stably expressing PAR1/2 and/or Furin) and HIV-1-infected primary macrophages, we demonstrate that the expression of Furin enhances neuronal cell viability in the context of PAR1- or PAR2-induced neuronal cytotoxicity. The present study provides insights into early stages of HIV-1 induced neuronal injury and the protective role of Furin in neurons co-expressing PAR1 and/or PAR2, as observed in HAND.


Asunto(s)
Furina/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Inflamación/virología , Trastornos Neurocognitivos/virología , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Animales , Células CHO , Cricetulus , Células HEK293 , Infecciones por VIH/virología , Humanos , Inflamación/metabolismo , Trastornos Neurocognitivos/metabolismo , Transfección
5.
Sci Rep ; 8(1): 1943, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386597

RESUMEN

Autosomal dominant hypercholesterolemia (ADH) is characterized by elevated LDL-C levels leading to coronary heart disease. Four genes are implicated in ADH: LDLR, APOB, PCSK9 and APOE. Our aim was to identify new mutations in known genes, or in new genes implicated in ADH. Thirteen French families with ADH were recruited and studied by exome sequencing after exclusion, in their probands, of mutations in the LDLR, PCSK9 and APOE genes and fragments of exons 26 and 29 of APOB gene. We identified in one family a p.Arg50Gln mutation in the APOB gene, which occurs in a region not usually associated with ADH. Segregation and in-silico analysis suggested that this mutation is disease causing in the family. We identified in another family with the p.Ala3396Thr mutation of APOB, one patient with a severe phenotype carrying also a mutation in PCSK9: p.Arg96Cys. This is the first compound heterozygote reported with a mutation in APOB and PCSK9. Functional studies proved that the p.Arg96Cys mutation leads to increased LDL receptor degradation. This work shows that Next-Generation Sequencing (exome, genome or targeted sequencing) are powerful tools to find new mutations and identify compound heterozygotes, which will lead to better diagnosis and treatment of ADH.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hiperlipoproteinemia Tipo II/genética , Mutación/genética , Apolipoproteínas B/genética , Segregación Cromosómica/genética , Familia , Femenino , Células HEK293 , Heterocigoto , Humanos , Masculino , Linaje , Proproteína Convertasa 9/genética
6.
J Biol Chem ; 292(5): 1573-1590, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27998977

RESUMEN

Familial hypercholesterolemia (FH) is characterized by severely elevated low density lipoprotein (LDL) cholesterol. Herein, we identified an FH patient presenting novel compound heterozygote mutations R410S and G592E of the LDL receptor (LDLR). The patient responded modestly to maximum rosuvastatin plus ezetimibe therapy, even in combination with a PCSK9 monoclonal antibody injection. Using cell biology and molecular dynamics simulations, we aimed to define the underlying mechanism(s) by which these LDLR mutations affect LDL metabolism and lead to hypercholesterolemia. Our data showed that the LDLR-G592E is a class 2b mutant, because it mostly failed to exit the endoplasmic reticulum and was degraded. Even though LDLR-R410S and LDLR-WT were similar in levels of cell surface and total receptor and bound equally well to LDL or extracellular PCSK9, the LDLR-R410S was resistant to exogenous PCSK9-mediated degradation in endosomes/lysosomes and showed reduced LDL internalization and degradation relative to LDLR-WT. Evidence is provided for a tighter association of LDL with LDLR-R410S at acidic pH, a reduced LDL delivery to late endosomes/lysosomes, and an increased release in the medium of the bound/internalized LDL, as compared with LDLR-WT. These data suggested that LDLR-R410S recycles loaded with its LDL-cargo. Our findings demonstrate that LDLR-R410S represents an LDLR loss-of-function through a novel class 8 FH-causing mechanism, thereby rationalizing the observed phenotype.


Asunto(s)
Endosomas/metabolismo , Hiperlipoproteinemia Tipo II , Lipoproteínas LDL/metabolismo , Lisosomas/metabolismo , Proproteína Convertasa 9/metabolismo , Receptores de LDL , Sustitución de Aminoácidos , Endosomas/genética , Femenino , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/metabolismo , Lisosomas/genética , Masculino , Mutación Missense , Unión Proteica , Receptores de LDL/genética , Receptores de LDL/metabolismo
8.
J Biol Chem ; 291(32): 16659-71, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27284008

RESUMEN

Single domain antibodies (sdAbs) correspond to the antigen-binding domains of camelid antibodies. They have the same antigen-binding properties and specificity as monoclonal antibodies (mAbs) but are easier and cheaper to produce. We report here the development of sdAbs targeting human PCSK9 (proprotein convertase subtilisin/kexin type 9) as an alternative to anti-PCSK9 mAbs. After immunizing a llama with human PCSK9, we selected four sdAbs that bind PCSK9 with a high affinity and produced them as fusion proteins with a mouse Fc. All four sdAb-Fcs recognize the C-terminal Cys-His-rich domain of PCSK9. We performed multiple cellular assays and demonstrated that the selected sdAbs efficiently blocked PCSK9-mediated low density lipoprotein receptor (LDLR) degradation in cell lines, in human hepatocytes, and in mouse primary hepatocytes. We further showed that the sdAb-Fcs do not affect binding of PCSK9 to the LDLR but rather block its induced cellular LDLR degradation. Pcsk9 knock-out mice expressing a human bacterial artificial chromosome (BAC) transgene were generated, resulting in plasma levels of ∼300 ng/ml human PCSK9. Mice were singly or doubly injected with the best sdAb-Fc and analyzed at day 4 or 11, respectively. After 4 days, mice exhibited a 32 and 44% decrease in the levels of total cholesterol and apolipoprotein B and ∼1.8-fold higher liver LDLR protein levels. At 11 days, the equivalent values were 24 and 46% and ∼2.3-fold higher LDLR proteins. These data constitute a proof-of-principle for the future usage of sdAbs as PCSK9-targeting drugs that can efficiently reduce LDL-cholesterol, and as tools to study the Cys-His-rich domain-dependent sorting the PCSK9-LDLR complex to lysosomes.


Asunto(s)
LDL-Colesterol/metabolismo , Proproteína Convertasa 9/metabolismo , Proteolisis/efectos de los fármacos , Receptores de LDL/metabolismo , Anticuerpos de Dominio Único/farmacología , Animales , LDL-Colesterol/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Inhibidores de PCSK9 , Proproteína Convertasa 9/genética , Receptores de LDL/genética
9.
J Biol Chem ; 290(30): 18609-20, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26085104

RESUMEN

Amyloid precursor-like protein 2 (APLP2) and sortilin were reported to individually bind the proprotein convertase subtilisin/kexin type 9 (PCSK9) and regulate its activity on the low-density lipoprotein receptor (LDLR). The data presented herein demonstrate that mRNA knockdowns of APLP2, sortilin, or both in the human hepatocyte cell lines HepG2 and Huh7 do not affect the ability of extracellular PCSK9 to enhance the degradation of the LDLR. Furthermore, mice deficient in APLP2 or sortilin do not exhibit significant changes in liver LDLR or plasma total cholesterol levels. Moreover, cellular overexpression of one or both proteins does not alter PCSK9 secretion, or its activity on the LDLR. We conclude that PCSK9 enhances the degradation of the LDLR independently of either APLP2 or sortilin both ex vivo and in mice. Interestingly, when co-expressed with PCSK9, both APLP2 and sortilin were targeted for lysosomal degradation. Using chemiluminescence proximity and co-immunoprecipitation assays, as well as biosynthetic analysis, we discovered that sortilin binds and stabilizes APLP2, and hence could regulate its intracellular functions on other targets.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proproteína Convertasas/metabolismo , Proteolisis , Receptores de LDL/biosíntesis , Serina Endopeptidasas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/biosíntesis , Proteínas Adaptadoras del Transporte Vesicular/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Regulación de la Expresión Génica , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proproteína Convertasa 9 , Proproteína Convertasas/genética , Receptores de LDL/genética , Serina Endopeptidasas/genética
10.
FEBS Open Bio ; 4: 741-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25349778

RESUMEN

A genome-wide association study suggested that a R504H mutation in the proprotein convertase PC7 is associated with increased circulating levels of HDL and reduced triglycerides in black Africans. Our present results show that PC7 and PC7-R504H exhibit similar processing of transferrin receptor-1, proSortilin, and apolipoprotein-F. Plasma analyses revealed no change in the lipid profiles, insulin or glucose of wild type and PC7 KO mice. Thus, the R504H mutation does not modify the proteolytic activity of PC7. The mechanisms behind the implication of PC7 in the regulation of human HDL, triglycerides and in modifying the levels of atherogenic small dense LDL remain to be elucidated.

11.
J Biol Chem ; 289(25): 17732-46, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24808179

RESUMEN

Annexin A2 (AnxA2) was reported to be an extracellular endogenous inhibitor of proprotein convertase subtilisin kexin type 9 (PCSK9) activity on cell-surface LDL receptor degradation. In this study, we investigated the effect of silencing the expression of AnxA2 and PCSK9 in HepG2 and Huh7 cells to better define the role of AnxA2 in PCSK9 regulation. AnxA2 knockdown in Huh7 cells significantly increased PCSK9 protein levels as opposed to AnxA2 knockdown in HepG2 cells. However, HepG2 cells overexpressing AnxA2 had lower levels of PCSK9 protein. Overall, our data revealed a plausible new role of AnxA2 in the reduction of PCSK9 protein levels via a translational mechanism. Moreover, the C-terminal Cys/His-rich domain of PCSK9 is crucial in the regulation of PCSK9 activity, and we demonstrated by far-Western blot assay that the M1 and M2 domains are necessary for the specific interaction of PCSK9's C-terminal Cys/His-rich domain and AnxA2. Finally, we produced and purified recombinant PCSK9 from humans and mice, which was characterized and used to perform 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate LDL cell-based assays on the stable knockdown HepG2 and Huh7 cells. We also demonstrated for the first time the equipotency of human and mouse PCSK9 R218S on human cells.


Asunto(s)
Anexina A2/metabolismo , Proproteína Convertasas/biosíntesis , Biosíntesis de Proteínas/fisiología , Serina Endopeptidasas/biosíntesis , Animales , Anexina A2/química , Anexina A2/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Células Hep G2 , Humanos , Ratones , Proproteína Convertasa 9 , Proproteína Convertasas/química , Proproteína Convertasas/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Serina Endopeptidasas/química , Serina Endopeptidasas/genética
12.
J Biol Chem ; 287(40): 33745-55, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22875854

RESUMEN

The proprotein convertase PCSK9 is a major target in the treatment of hypercholesterolemia because of its ability bind the LDL receptor (LDLR) and enhance its degradation in endosomes/lysosomes. In the endoplasmic reticulum, the zymogen pro-PCSK9 is first autocatalytically cleaved at its internal Gln(152)↓, resulting in a secreted enzymatically inactive complex of PCSK9 with its inhibitory prosegment (prosegment·PCSK9), which is the active form of PCSK9 on the LDLR. We mutagenized the P1 cleavage site Gln(152) into all other residues except Cys and analyzed the expression and secretion of the resulting mutants. The data demonstrated the following. 1) The only P1 residues recognized by PCSK9 are Gln > Met > Ala > Ser > Thr ≈ Asn, revealing an unsuspected specificity. 2) All other mutations led to the formation of an unprocessed zymogen that acted as a dominant negative retaining the native protein in the endoplasmic reticulum. Analysis of a large panoply of known natural and artificial point mutants revealed that this general dominant negative observation applies to all PCSK9 mutations that result in the inability of the protein to exit the endoplasmic reticulum. Such a tight quality control property of the endoplasmic reticulum may lead to the development of specific PCSK9 small molecule inhibitors that block its autocatalytic processing. Finally, inspired by the most active gain-of-function mutant, D374Y, we evaluated the LDLR degradation activity of 18 Asp(374) variants of PCSK9. All Asp(374) mutations resulted in similar gain-of-function activity on the LDLR except that D374E was as active as native PCSK9, D374G was relatively less active, and D374N and D374P were completely inactive.


Asunto(s)
Mutación , Proproteína Convertasas/genética , Proproteína Convertasas/fisiología , Receptores de LDL/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/fisiología , Empalme Alternativo , Catálisis , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Precursores Enzimáticos/química , Citometría de Flujo , Genes Dominantes , Células HEK293 , Humanos , Hipercolesterolemia/genética , Modelos Biológicos , Proproteína Convertasa 9 , Receptores de LDL/química , Transfección
13.
Atherosclerosis ; 223(2): 394-400, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22683120

RESUMEN

BACKGROUND: The identification of mutations in PCSK9 (proprotein convertase subtilisin kexin9) in autosomal dominant hypercholesterolemia (ADH), has revealed the existence of a new player in cholesterol homeostasis. PCSK9 has been shown to enhance the degradation of the LDL receptor (LDLR) at the cell surface. Gain-of-function mutations of PCSK9 induce ADH and are very rare, but their identification is crucial in studying PCSK9's role in hypercholesterolemia, its detailed trafficking pathway and its impact on the LDLR. METHODS: In order to identify new mutations and understand the exact mechanisms of action of mutated PCSK9, PCSK9 was sequenced in 75 ADH patients with no mutations in the LDLR or APOB genes. Functional analyses in cell culture were conducted and the impact of novel PCSK9 mutations on the quantitative and qualitative features of lipoprotein particles and on the HDL-mediated cellular cholesterol efflux was studied. RESULTS: Among these 75 ADH probands with no mutations in the LDLR or APOB genes, four gain-of-function mutations of PCSK9 were identified, of which two were novel: the p.Leu108Arg and the p.Asp35Tyr substitutions. In vitro studies of their consequences on the activity of PCSK9 on cell surface levels of LDLR showed that the p.Leu108Arg mutation clearly results in a gain-of-function, while the p.Asp35Tyr mutation created a novel Tyr-sulfation site, which may enhance the intracellular activity of PCSK9. CONCLUSION: These data further contribute to the characterization of PCSK9 mutations and to better understanding of the impact on cholesterol metabolism of this new therapeutic target.


Asunto(s)
Hiperlipoproteinemia Tipo II/genética , Mutación , Proproteína Convertasas/genética , Serina Endopeptidasas/genética , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Biomarcadores/sangre , HDL-Colesterol/sangre , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Células Hep G2 , Humanos , Hiperlipoproteinemia Tipo II/sangre , Hiperlipoproteinemia Tipo II/metabolismo , Masculino , Paris , Linaje , Fenotipo , Proproteína Convertasa 9 , Proproteína Convertasas/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Serina Endopeptidasas/metabolismo , Transfección
14.
J Biol Chem ; 286(26): 22785-94, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21550985

RESUMEN

Bone morphogenetic protein 10 (BMP10) is a member of the TGF-ß superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (∼60 kDa) is processed into active BMP10 (∼14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR(316)↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Furina/metabolismo , Ventrículos Cardíacos/enzimología , Miocardio/enzimología , Animales , Proteínas Morfogenéticas Óseas/genética , Células COS , Chlorocebus aethiops , Furina/antagonistas & inhibidores , Furina/genética , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Noqueados , Especificidad de Órganos , Inhibidores de Serina Proteinasa/farmacología
15.
Glycobiology ; 21(10): 1290-300, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21527438

RESUMEN

The limited proteolysis of proteins by the proprotein convertases (PCs) is a common means of producing bioactive proteins or peptides. The PCs are associated with numerous human pathologies and their activity can be reduced through the use of specific inhibitors. Here, we demonstrate an alternative approach to inhibiting PCs by altering their N-glycosylation. Through site-directed mutagenesis, we show that the convertase PC1/3 contains two N-glycans, only one of which is critical for its prosegment cleavage. The exact structure of PC1/3 N-glycans does not significantly affect its zymogen activation within endocrine cells, but glycosylation of Asn(146) is critical. Processing of the PC1/3's substrate proopiomelanocortin (POMC) was used in a cell-based assay to screen a collection of 45 compounds structurally related to known glycosidase inhibitors. Two 5-thiomannose-containing disaccharide derivatives were discovered to block PC1/3 and POMC processing into the analgesic peptide ß-endorphin. These compounds also reduced the zymogen activation of the convertase subtilisin kexin isozyme-1 (SKI-1), blocked the processing of its substrate the sterol regulatory element-binding protein SREBP-2 and altered its glycosylation. Thus, modification of PC glycosylation may also be a means of blocking their activity, an effect which, in the case of SKI-1, may be of possible therapeutic use since SREBP-2 regulates sterol levels including cholesterol biosynthesis and its metabolism.


Asunto(s)
Precursores Enzimáticos/metabolismo , Proproteína Convertasa 1/metabolismo , Proproteína Convertasas/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Células CHO , Cricetinae , Activación Enzimática , Glicosilación , Células HEK293 , Humanos , Proopiomelanocortina/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Transporte de Proteínas , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , betaendorfina/metabolismo
16.
J Biol Chem ; 286(4): 2728-38, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21075846

RESUMEN

The zymogen activation mechanism and physiological functions of the most ancient and highly conserved basic amino acid-specific proprotein convertase 7 (PC7) are not known. Herein, we characterized the biosynthesis, subcellular localization, and trafficking of the membrane-bound full-length rat and human PC7. The prosegment of PC7 is primarily secreted alone as a non-inhibitory protein via the conventional, Golgi-dependent, secretory pathway. Mature PC7 is partially sulfated and thus reaches the cell surface via the conventional route. However, a fraction of PC7 reaches the cell surface through a brefeldin A- and COPII-independent unconventional secretory pathway. The latter trafficking may explain the rapid (<10 min) transit of a fraction of PC7 from the ER to the cell surface. Electron microscopy further confirmed the localization of PC7 to the cell surface of HEK293 cells. Within the cytosolic tail, only two cysteines (Cys(699) and Cys(704)) are palmitoylated, but this modification does not affect the choice of trafficking pathway. Swapping the transmembrane-cytosolic tail (TMCT) sequences of the convertases Furin and PC7 revealed that PC7(TMCT-Furin) is much more sulfated and hence traffics more efficiently through the conventional secretory pathway. In contrast, the Furin(TMCT-PC7) is no longer sulfated and thus reaches the cell surface by the unconventional pathway. Because trafficking of PC7(CT-Furin) and Furin(CT-PC7) resemble their wild type counterparts, we deduce that the transmembrane domain of PC7 regulates the sorting of PC7 toward the unconventional secretory pathway. In conclusion, PC7 is distinct from other proprotein convertases in its zymogen activation, subcellular localization, and trafficking.


Asunto(s)
Retículo Endoplásmico/enzimología , Precursores Enzimáticos/metabolismo , Subtilisinas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Activación Enzimática/fisiología , Precursores Enzimáticos/genética , Furina/genética , Furina/metabolismo , Células HEK293 , Humanos , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Ratas , Subtilisinas/genética
17.
J Biol Chem ; 285(52): 40965-78, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20937814

RESUMEN

PCSK9, a target for the treatment of dyslipidemia, enhances the degradation of the LDL receptor (LDLR) in endosomes/lysosomes, up-regulating LDL-cholesterol levels. Whereas the targeting and degradation of the PCSK9-LDLR complex are under scrutiny, the roles of the N- and C-terminal domains of PCSK9 are unknown. Although autocatalytic zymogen processing of PCSK9 occurs at Gln(152)↓, here we show that human PCSK9 can be further cleaved in its N-terminal prosegment at Arg(46)↓ by an endogenous enzyme of insect High Five cells and by a cellular mammalian protease, yielding an ∼4-fold enhanced activity. Removal of the prosegment acidic stretch resulted in ∼3-fold higher binding to LDLR in vitro, in ≥4-fold increased activity on cellular LDLR, and faster cellular internalization in endosome/lysosome-like compartments. Finally, swapping the acidic stretch of PCSK9 with a similar one found in the glycosylphosphatidylinositol-anchored heparin-binding protein 1 does not impair PCSK9 autoprocessing, secretion, or activity and confirmed that the acidic stretch acts as an inhibitor of PCSK9 function. We also show that upon short exposure to pH values 6.5 to 5.5, an ∼2.5-fold increase in PCSK9 activity on total and cell surface LDLR occurs, and PCSK9 undergoes a second cleavage at Arg(248), generating a two-chain PCSK9-ΔN(248). At pH values below 5.5, PCSK9 dissociates from its prosegment and loses its activity. This pH-dependent activation of PCSK9 represents a novel pathway to further activate PCSK9 in acidic endosomes. These data enhance our understanding of the functional role of the acidic prosegment and on the effect of pH in the regulation of PCSK9 activity.


Asunto(s)
Endosomas/enzimología , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Receptores de LDL/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Endosomas/genética , Activación Enzimática/fisiología , Células HEK293 , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Lisosomas/enzimología , Lisosomas/genética , Mariposas Nocturnas , Péptidos/genética , Proproteína Convertasa 9 , Proproteína Convertasas , Unión Proteica/fisiología , Receptores de LDL/genética , Serina Endopeptidasas/genética
18.
J Lipid Res ; 51(1): 140-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19571328

RESUMEN

The proprotein convertase subtilisin kexin-9 (PCSK9) circulates in plasma as mature and furin-cleaved forms. A polyclonal antibody against human PCSK9 was used to develop an ELISA that measures total plasma PCSK9 rather than only the mature form. A cross-sectional study evaluated plasma levels in normal (n = 254) and hypercholesterolemic (n = 200) subjects treated or untreated with statins or statin plus ezetimibe. In controls, mean plasma PCSK9 (89.5 +/- 31.9 ng/ml) correlated positively with age, total cholesterol, LDL-cholesterol (LDL-C), triglycerides, and fasting glucose. Sequencing PCSK9 from individuals at the extremes of the normal PCSK9 distribution identified a new loss-of-function R434W variant associated with lower levels of circulating PCSK9 and LDL-C. In hypercholesterolemic subjects, PCSK9 levels were higher than in controls (99.3 +/- 31.7 ng/ml, P < 0.04) and increased in proportion to the statin dose, combined or not with ezetimibe. In treated patients (n = 139), those with familial hypercholesterolemia (FH; due to LDL receptor gene mutations) had higher PCSK9 values than non-FH (147.01 +/- 42.5 vs. 127.2 +/- 40.8 ng/ml, P < 0.005), but LDL-C reduction correlated positively with achieved plasma PCSK9 levels to a similar extent in both subsets (r = 0.316, P < 0.02 in FH and r = 0.275, P < 0.009 in non-FH). The detection of circulating PCSK9 in both FH and non-FH subjects means that this assay could be used to monitor response to therapy in a wide range of patients.


Asunto(s)
Monitoreo de Drogas/métodos , Ensayo de Inmunoadsorción Enzimática , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hiperlipoproteinemia Tipo II/sangre , Serina Endopeptidasas/sangre , Anticuerpos/inmunología , Azetidinas/uso terapéutico , Glucemia/análisis , Línea Celular , Colesterol/sangre , LDL-Colesterol/sangre , Estudios Transversales , Ezetimiba , Humanos , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Proproteína Convertasa 9 , Proproteína Convertasas , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/inmunología , Triglicéridos/sangre
19.
Hepatology ; 48(2): 646-54, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18666258

RESUMEN

UNLABELLED: The gene encoding the proprotein convertase subtilisin/kexin type 9 (PCSK9) is linked to familial hypercholesterolemia, as are those of the low-density lipoprotein receptor (LDLR) and apolipoprotein B. PCSK9 enhances LDLR degradation, resulting in low-density lipoprotein accumulation in plasma. To analyze the role of hepatic PCSK9, total and hepatocyte-specific knockout mice were generated. They exhibit 42% and 27% less circulating cholesterol, respectively, showing that liver PCSK9 was responsible for two thirds of the phenotype. We also demonstrated that, in liver, PCSK9 is exclusively expressed in hepatocytes, representing the main source of circulating PCSK9. The data suggest that local but not circulating PCSK9 regulates cholesterol levels. Although transgenic mice overexpressing high levels of liver and circulating PCSK9 led to the almost complete disappearance of the hepatic LDLR, they did not recapitulate the plasma cholesterol levels observed in LDLR-deficient mice. Single LDLR or double LDLR/PCSK9 knockout mice exhibited similar cholesterol profiles, indicating that PCSK9 regulates cholesterol homeostasis exclusively through the LDLR. Finally, the regenerating liver of PCSK9-deficient mice exhibited necrotic lesions, which were prevented by a high-cholesterol diet. However, lipid accumulation in hepatocytes of these mice was markedly reduced under both chow and high-cholesterol diets, revealing that PCSK9 deficiency confers resistance to liver steatosis. CONCLUSION: Although PCSK9 is a target for controlling hypercholesterolemia, our data indicate that upon hepatic damage, patients lacking PCSK9 could be at risk.


Asunto(s)
Hepatocitos/metabolismo , Regeneración Hepática/fisiología , Receptores de LDL/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Colesterol/sangre , Colesterol en la Dieta/administración & dosificación , Hígado Graso/prevención & control , Hepatectomía/métodos , Inmunidad Innata , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Necrosis , Proproteína Convertasa 9 , Proproteína Convertasas , Receptores de LDL/deficiencia , Serina Endopeptidasas/sangre , Serina Endopeptidasas/deficiencia , Distribución Tisular , Regulación hacia Arriba
20.
J Biol Chem ; 283(32): 21899-908, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18559340

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-transmitted Alphavirus that causes in humans an acute infection characterized by polyarthralgia, fever, myalgia, and headache. Since 2005 this virus has been responsible for an epidemic outbreak of unprecedented magnitude. By analogy with other alphaviruses, it is thought that cellular proteases are able to process the viral precursor protein E3E2 to produce the receptor-binding E2 protein that associates as a heterodimer with E1. Destabilization of the heterodimer by exposure to low pH allows viral fusion and infection. We show that among a large panel of proprotein convertases, membranous furin but also PC5B can process E3E2 from African CHIKV strains at the HRQRR(64) / ST site, whereas a CHIKV strain of Asian origin is cleaved at RRQRR(64) / SI by membranous and soluble furin, PC5A, PC5B, and PACE4 but not by PC7 or SKI-1. Using fluorogenic model peptides and recombinant convertases, we observed that the Asian strain E3E2 model peptide is cleaved most efficiently by furin and PC5A. This cleavage was also observed in CHIKV-infected cells and could be blocked by furin inhibitor decanoyl-RVKR-chloromethyl ketone. This inhibitor was compared with chloroquine for its ability to inhibit CHIKV spreading in myoblast cell cultures, a cell-type previously described as a natural target of this virus. Our results demonstrate the role of furin-like proteases in the processing of CHIKV particles and point out new approaches to inhibit this infection.


Asunto(s)
Infecciones por Alphavirus/enzimología , Infecciones por Alphavirus/virología , Virus Chikungunya/fisiología , Furina/antagonistas & inhibidores , Furina/metabolismo , Mioblastos/virología , Proteínas del Envoltorio Viral/metabolismo , Infecciones por Alphavirus/metabolismo , Clorometilcetonas de Aminoácidos/farmacología , Antimaláricos/farmacología , Línea Celular , Virus Chikungunya/efectos de los fármacos , Cloroquina/farmacología , Humanos , Mioblastos/citología , Proproteína Convertasas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...