Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 127(Pt 11): 2493-506, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24695856

RESUMEN

During mitotic entry, centrosomes separate to establish the bipolar spindle. Delays in centrosome separation can perturb chromosome segregation and promote genetic instability. However, interphase centrosomes are physically tethered by a proteinaceous linker composed of C-Nap1 (also known as CEP250) and the filamentous protein rootletin. Linker disassembly occurs at the onset of mitosis in a process known as centrosome disjunction and is triggered by the Nek2-dependent phosphorylation of C-Nap1. However, the mechanistic consequences of C-Nap1 phosphorylation are unknown. Here, we demonstrate that Nek2 phosphorylates multiple residues within the C-terminal domain of C-Nap1 and, collectively, these phosphorylation events lead to loss of oligomerization and centrosome association. Mutations in non-phosphorylatable residues that make the domain more acidic are sufficient to release C-Nap1 from the centrosome, suggesting that it is an increase in overall negative charge that is required for this process. Importantly, phosphorylation of C-Nap1 also perturbs interaction with the core centriolar protein, Cep135, and interaction of endogenous C-Nap1 and Cep135 proteins is specifically lost in mitosis. We therefore propose that multisite phosphorylation of C-Nap1 by Nek2 perturbs both oligomerization and Cep135 interaction, and this precipitates centrosome disjunction at the onset of mitosis.


Asunto(s)
Autoantígenos/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Centrosoma/fisiología , Huso Acromático/metabolismo , Autoantígenos/genética , Proteínas de Ciclo Celular/genética , Segregación Cromosómica/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Inestabilidad Genómica , Células HeLa , Humanos , Mitosis , Mutación/genética , Quinasas Relacionadas con NIMA , Fosforilación , Unión Proteica/genética , Ingeniería de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética
2.
J Cell Sci ; 126(Pt 1): 163-75, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23015594

RESUMEN

Proteomic studies in unicellular eukaryotes identified a set of centriolar proteins that included proteome of centriole 1 (Poc1). Functional studies in these organisms implicated Poc1 in centriole duplication and length control, as well as ciliogenesis. Using isoform-specific antibodies and RNAi depletion, we have examined the function of the two related human proteins, Poc1A and Poc1B. We find that Poc1A and Poc1B each localize to centrioles and spindle poles, but do so independently and with different dynamics. However, although loss of one or other Poc1 protein does not obviously disrupt mitosis, depletion of both proteins leads to defects in spindle organization with the generation of unequal or monopolar spindles. Our data indicate that, once incorporated, a fraction of Poc1A and Poc1B remains stably associated with parental centrioles, but that depletion prevents incorporation into nascent centrioles. Nascent centrioles lacking both Poc1A and Poc1B exhibit loss of integrity and maturation, and fail to undergo duplication. Thus, when Poc1A and Poc1B are co-depleted, new centrosomes capable of maturation cannot assemble and unequal spindles result. Interestingly, Poc1B, but not Poc1A, is phosphorylated in mitosis, and depletion of Poc1B alone was sufficient to perturb cell proliferation. Hence, Poc1A and Poc1B play redundant, but essential, roles in generation of stable centrioles, but Poc1B may have additional independent functions during cell cycle progression.


Asunto(s)
Centriolos/metabolismo , Proteínas/metabolismo , Huso Acromático/metabolismo , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular , Línea Celular , Línea Celular Tumoral , Proteínas del Citoesqueleto , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Células HeLa , Humanos , Inmunoprecipitación , Mitosis/genética , Mitosis/fisiología , Proteínas/genética
3.
Exp Cell Res ; 314(3): 574-89, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18068700

RESUMEN

In many animals, the germ line develops from a distinct mitochondria-rich region of embryonic cytoplasm called the germ plasm. However, the protein composition of germ plasm and its formation remain poorly understood, except in Drosophila. Here, we show that Xpat, a recently identified protein component of Xenopus germ plasm, interacts via its C-terminal domain with a novel protein, xPix1. Xpat and xPix1 are co-expressed in ovaries, eggs and early embryos and colocalize to the mitochondrial cloud and germ plasm in stage I and stage VI oocytes, respectively. Although Xpat appears unique to Xenopus, Pix proteins, which contain an N-terminal WD40 domain and C-terminal coiled-coil, are widely conserved. In humans, two proteins, Pix1 and Pix2, are expressed at varying levels in different cancer cell lines. Importantly, as well as localizing to mitochondria, human Pix proteins localize to centrosomes and associate with microtubules in vitro and in vivo. Although, Pix proteins are stably expressed through the cell cycle, Pix2 concentrates on microtubule structures in mitosis and microinjection of Pix antibodies interferes with cell division. Based on these data, we propose that Pix1 and Pix2 are microtubule-associated adaptor proteins that likely contribute to a range of developmental and cell division processes.


Asunto(s)
Centrosoma/metabolismo , Citoplasma/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Oocitos/metabolismo , Plaquinas/metabolismo , Xenopus laevis/metabolismo , Animales , Células COS , División Celular/fisiología , Línea Celular , Centrosoma/ultraestructura , Chlorocebus aethiops , Secuencia Conservada , Citoplasma/genética , Citoplasma/ultraestructura , Femenino , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/aislamiento & purificación , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Datos de Secuencia Molecular , Oocitos/ultraestructura , Plaquinas/genética , Plaquinas/aislamiento & purificación , Estructura Terciaria de Proteína/fisiología , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas de Xenopus/genética , Proteínas de Xenopus/aislamiento & purificación , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
4.
Mol Biol Cell ; 16(4): 1711-24, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15659651

RESUMEN

Centrosomes undergo dramatic changes in composition and activity during cell cycle progression. Yet mechanisms involved in recruiting centrosomal proteins are poorly understood. Nek2 is a cell cycle-regulated protein kinase required for regulation of centrosome structure at the G2/M transition. Here, we have addressed the processes involved in trafficking of Nek2 to the centrosome of human adult cells. We find that Nek2 exists in small, highly dynamic cytoplasmic particles that move to and from the centrosome. Many of these particles align along microtubules and a motif was identified in the Nek2 C-terminal noncatalytic domain that allows both microtubule binding and centrosome localization. FRAP experiments reveal that 70% of centrosomal Nek2 is rapidly turned over (t(1/2) approximately 3 s). Microtubules facilitate Nek2 trafficking to the centrosome but only over long distances. Cytoplasmic Nek2 particles colocalize in part with PCM-1 containing centriolar satellites and depletion of PCM-1 interferes with centrosomal recruitment of Nek2 and its substrate C-Nap1. Finally, we show that proteasomal degradation is necessary to allow rapid recruitment of new Nek2 molecules to the centrosome. Together, these data highlight multiple processes involved in regulating the abundance of Nek2 kinase at the centrosome including microtubule binding, the centriolar satellite component PCM-1, and localized protein degradation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrosoma/enzimología , Microtúbulos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Autoantígenos , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Centrosoma/metabolismo , Cricetinae , Humanos , Datos de Secuencia Molecular , Quinasas Relacionadas con NIMA , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Alineación de Secuencia
5.
Mol Biol Cell ; 16(2): 849-60, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15601896

RESUMEN

An integral part of cell division is the separation of daughter cells via cytokinesis. There is now good evidence that the completion of cytokinesis requires coordinated membrane trafficking to deliver new membrane to the tip of the furrow and to complete the abscission. Here we have examined membrane traffic in cytokinesis and describe several novel observations. First, we show that Rab11- and FIP3-containing recycling endosomes accumulate near the cleavage furrow and are required for successful completion of cytokinesis. Second, we demonstrate that the Rab11-FIP3 protein complex is intimately involved in the delivery of endosomes to the cleavage furrow. Significantly, although FIP3 recruitment to endosomes is Rab11 dependent, we find that the targeting of FIP3 to the midbody is independent of Rab11. Third, we show that the Rab11-FIP3 complex is required for a late stage of cytokinesis, possibly abscission. Finally, we demonstrate that localization of FIP3 is subject to substantial spatial and temporal regulation. These data provide the first detailed analysis of recycling endosomes in cell division and provide a new model for membrane traffic to the furrow. We propose that the dynamic Rab11-FIP3 interaction controls the delivery, targeting, and fusion of recycling endosomes with furrow during late cytokinesis and abscission.


Asunto(s)
Membrana Celular/metabolismo , Citocinesis , Proteínas de Unión al ADN/metabolismo , Endosomas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Proteínas Portadoras/metabolismo , Ciclo Celular , Citometría de Flujo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Quinasa I-kappa B , Ratones , Microscopía Confocal , Microscopía por Video , Células 3T3 NIH , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Interferencia de ARN , Factores de Tiempo , Factores Estimuladores hacia 5'
6.
Curr Biol ; 14(13): 1200-7, 2004 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-15242618

RESUMEN

Centriole duplication initiates at the G1-to-S transition in mammalian cells and is completed during the S and G2 phases. The localization of a number of protein kinases to the centrosome has revealed the importance of protein phosphorylation in controlling the centriole duplication cycle. Here we show that the human Polo-like kinase 2 (Plk2) is activated near the G1-to-S transition of the cell cycle. Endogenous and overexpressed HA-Plk2 localize with centrosomes, and this interaction is independent of Plk2 kinase activity. In contrast, the kinase activity of Plk2 is required for centriole duplication. Overexpression of a kinase-deficient mutant under S-phase arrest blocks centriole duplication. Downregulation of endogenous Plk2 with small hairpin RNAs interferes with the ability to reduplicate centrioles. Furthermore, centrioles failed to duplicate during the cell cycle of human fibroblasts and U2OS cells after overexpression of a Plk2 dominant-negative mutant. These results show that Plk2 is a physiological centrosomal protein and that its kinase activity is likely to be required for centriole duplication near the G1-to-S phase transition.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Centriolos/fisiología , Centrosoma/fisiología , Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Western Blotting , Proteínas de Ciclo Celular/fisiología , Células Cultivadas/citología , Centrosoma/metabolismo , Ciclina E , Cartilla de ADN , Técnica del Anticuerpo Fluorescente , Células HeLa/citología , Humanos , Mamíferos , Plásmidos/genética , Pruebas de Precipitina , Proteínas Quinasas , Proteínas Serina-Treonina Quinasas/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas de Xenopus/fisiología
7.
Biochem J ; 361(Pt 1): 77-85, 2002 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11742531

RESUMEN

Nek2 is a cell-cycle-regulated protein kinase that localizes to the centrosome and is likely to be involved in regulating centrosome structure at the G(2)/M transition. Here, we localize the functional human Nek2 gene to chromosome 1 and show that alternative polyadenylation signals provide a mechanism for generating two distinct isoforms. Sequencing of products generated by reverse transcriptase PCR, immunoblotting of cell extracts and transfection of antisense oligonucleotides together demonstrate that human Nek2 is expressed as two splice variants. These isoforms, designated Nek2A and Nek2B, are detected in primary blood lymphocytes as well as adult transformed cells. Nek2A and Nek2B, which can form homo- and hetero-dimers, both localize to the centrosome, although only Nek2A can induce centrosome splitting upon overexpression. Importantly, Nek2A and Nek2B exhibit distinct patterns of cell-cycle-dependent expression. Both are present in low amounts in the G(1) phase and exhibit increased abundance in the S and G(2) phases. However, Nek2A disappears in prometaphase-arrested cells, whereas Nek2B remains elevated. These results demonstrate that two alternative splice variants of the human centrosomal kinase Nek2 exist that differ in their expression patterns during mitosis. This has important implications for our understanding of both Nek2 protein kinase regulation and the control of centrosome structure during mitosis.


Asunto(s)
Centrosoma/enzimología , Proteínas Serina-Treonina Quinasas/genética , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Cromosomas Humanos Par 1/genética , ADN Complementario/genética , Dimerización , Exones , Expresión Génica , Células HeLa , Humanos , Células Híbridas , Intrones , Mitosis/genética , Datos de Secuencia Molecular , Quinasas Relacionadas con NIMA , Proteínas Serina-Treonina Quinasas/química , ARN Mensajero/genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...