Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cancer Res Clin Oncol ; 149(17): 15957-15967, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37684509

RESUMEN

PURPOSE: In ovarian cancer, there are two main routes of metastasis, namely intraperitoneal and retroperitoneal. Their biologic background is poorly understood. Identifying molecular markers involved might enable the development of tailored therapy regimens. Moreover, no reliable markers for response to anti-angiogenic treatment with bevacizumab are yet established. Angiopoietin-2 (Ang-2) is an angiogenic growth factor, involved in lymphatic activation and is associated with tumor progression. Here, we assessed the potential of Ang-2 as a molecular marker in metastasis and treatment of ovarian cancer. METHODS: In our study, quantitative and qualitative protein Ang-2 expression in tumor tissue of ovarian cancer patients was analyzed by Western blot (n = 138) and immunohistochemistry (n = 58). Further, Ang-2 levels in blood samples were quantified in enzyme-linked immunosorbent assay (n = 38). Expression levels of different tumor spread patterns were evaluated, and survival analyses were made. RESULTS: We observed that Ang-2 expression is significantly higher in tumors with retroperitoneal dissemination (pT1a-pT3b, pN1) compared to those showing intraperitoneal tumor growth (pT3c, pN0). In addition, patients with high Ang-2 expression have significantly longer overall survival compared to patients with low Ang-2 expression. Patients with high Ang-2 expression benefit significantly from therapy with bevacizumab. CONCLUSION: All in all, Ang-2 may serve as a molecular marker for patients with tumors prone to spread to lymph nodes and for patients who might benefit from bevacizumab therapy.


Asunto(s)
Angiopoyetina 2 , Neoplasias Ováricas , Humanos , Femenino , Bevacizumab/uso terapéutico , Metástasis Linfática , Angiopoyetina 2/metabolismo , Neoplasias Ováricas/patología , Biomarcadores
2.
Front Oncol ; 13: 1129682, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483521

RESUMEN

Introduction: The PI3K/AKT pathway is activated in 43-70% of breast cancer (BC)-patients and promotes the metastatic potential of BC cells by increasing cell proliferation, invasion and radioresistance. Therefore, AKT1-inhibition in combination with radiotherapy might be an effective treatment option for triple-negative breast cancer (TNBC)-patients with brain metastases. Methods: The impact of AKT1-knockout (AKT1_KO) and AKT-inhibition using Ipatasertib on MDA-MB-231 BR cells was assessed using in vitro cell proliferation and migration assays. AKT1-knockout in MDA-MB-231BR cells was performed using CRISPR/Cas9. The effect of AKT1-knockout on radiosensitivity of MDA-MB-231BR cell lines was determined via colony formation assays after cell irradiation. To detect genomic variants in AKT1_KO MDA-MB-231BR cells, whole-genome sequencing (WGS) was performed. Results: Pharmacological inhibition of AKT with the pan-AKT inhibitor Ipatasertib led to a significant reduction of cell viability but did not impact cell migration. Moreover, only MDA-MB-231BR cells were sensitized following Ipatasertib-treatment. Furthermore, specific AKT1-knockout in MDA-MB-231BR showed reduced cell viability in comparison to control cells, with significant effect in one of two analyzed clones. Unexpectedly, AKT1 knockout led to increased cell migration and clonogenic potential in both AKT1_KO clones. RNAseq-analysis revealed the deregulation of CTSO, CYBB, GPR68, CEBPA, ID1, ID4, METTL15, PBX1 and PTGFRN leading to the increased cell migration, higher clonogenic survival and decreased radiosensitivity as a consequence of the AKT1 knockout in MDA-MB-231BR. Discussion: Collectively, our results demonstrate that Ipatasertib leads to radiosensitization and reduced cell proliferation of MDA-MB-231BR. AKT1-inhibition showed altered gene expression profile leading to modified cell migration, clonogenic survival and radioresistance in MDA-MB-231BR. We conclude, that AKT1-inhibition in combination with radiotherapy contribute to novel treatment strategies for breast cancer brain metastases.

3.
Cells ; 11(20)2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36291142

RESUMEN

Breast cancer (BC) is the second-most common cause of brain metastases (BM) and BCBM patients have a reduced quality of life and a poor prognosis. Hyaluronan (HA), and in particular the hyaluronidase Hyal-1, has been already linked to the development of BCBM, and therefore presents an interesting opportunity to develop new effective therapeutic options. HA metabolism was further discovered by the CRISPR/Cas9-mediated knockout of HYAL1 and the shRNA-mediated down-regulation of HA-receptor CD44 in the brain-seeking triple-negative breast cancer (TNBC) cell line MDA-MB-231-BR. Therefore, the impact of Hyal-1 on adhesion, disruption, and invasion through the brain endothelium, both in vitro and in vivo, was studied. Our analysis points out a key role of Hyal-1 and low-molecular-weight HA (LMW-HA) in the formation of a pericellular HA-coat in BC cells, which in turn promotes tumor cell adhesion, disruption, and migration through the brain endothelium in vitro as well as the extent of BM in vivo. CD44 knockdown in MDA-MB-231-BR significantly reduced the pericellular HA-coat on these cells, and, consequently, tumor cell adhesion and invasion through the brain endothelium. Thus, the interaction between Hyal-1-generated LMW-HA fragments and the HA-receptor CD44 might represent a potential target for future therapeutic options in BC patients with a high risk of cerebral metastases formation.


Asunto(s)
Neoplasias Encefálicas , Ácido Hialurónico , Hialuronoglucosaminidasa , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Línea Celular Tumoral , Ácido Hialurónico/metabolismo , Hialuronoglucosaminidasa/genética , Hialuronoglucosaminidasa/metabolismo , Calidad de Vida , ARN Interferente Pequeño , Neoplasias de la Mama Triple Negativas/patología
4.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163822

RESUMEN

Brain metastases (BM) represent a growing problem for breast cancer (BC) patients. Recent studies have demonstrated a strong impact of the BC molecular subtype on the incidence of BM development. This study explores the interaction between BC cells of different molecular subtypes and the blood-brain barrier (BBB). We compared the ability of BC cells of different molecular subtypes to overcome several steps (adhesion to the brain endothelium, disruption of the BBB, and invasion through the endothelial layer) during cerebral metastases formation, in vitro as well as in vivo. Further, the impact of these cells on the BBB was deciphered at the molecular level by transcriptome analysis of the triple-negative (TNBC) cells themselves as well as of hBMECs after cocultivation with BC cell secretomes. Compared to luminal BC cells, TNBC cells have a greater ability to influence the BBB in vitro and consequently develop BM in vivo. The brain-seeking subline and parental TNBC cells behaved similarly in terms of adhesion, whereas the first showed a stronger impact on the brain endothelium integrity and increased invasive ability. The comparative transcriptome revealed potential brain-metastatic-specific key regulators involved in the aforementioned processes, e.g., the angiogenesis-related factors TNXIP and CXCL1. In addition, the transcriptomes of the two TNBC cell lines strongly differed in certain angiogenesis-associated factors and in several genes related to cell migration and invasion. Based on the present study, we hypothesize that the tumor cell's ability to disrupt the BBB via angiogenesis activation, together with increased cellular motility, is required for BC cells to overcome the BBB and develop brain metastases.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Animales , Barrera Hematoencefálica , Neoplasias Encefálicas/genética , Neoplasias de la Mama/genética , Comunicación Celular , Línea Celular Tumoral , Movimiento Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Trasplante de Neoplasias
5.
Neuro Oncol ; 22(7): 955-966, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32064501

RESUMEN

BACKGROUND: Brain metastasis (BM) in non-small-cell lung cancer (NSCLC) has a very poor prognosis. Recent studies have demonstrated the importance of cell adhesion molecules in tumor metastasis. The aim of our study was to investigate the role of activated leukocyte cell adhesion molecule (ALCAM) in BM formation in NSCLC. METHODS: Immunohistochemical analysis was performed on 143 NSCLC primary tumors and BM. A correlation between clinicopathological parameters and survival was developed. Biological properties of ALCAM were assessed in vitro by gene ablation using CRISPR/Cas9 technology in the NCI-H460 NSCLC cell line and in vivo by intracranial and intracardial cell injection of NCI-H460 cells in NMRI-Foxn1nu/nu mice. RESULTS: ALCAM expression was significantly upregulated in NSCLC brain metastasis (P = 0.023) with a de novo expression of ALCAM in 31.2% of BM. Moderate/strong ALCAM expression in both primary NSCLC and brain metastasis was associated with shortened survival. Functional analysis of an ALCAM knock-out (KO) cell line showed a significantly decreased cell adhesion capacity to human brain endothelial cells by 38% (P = 0.045). In vivo studies showed significantly lower tumor cell dissemination in mice injected with ALCAM-KO cells in both mouse models, and both the number and size of BM were significantly diminished in ALCAM depleted tumors. CONCLUSIONS: Our findings suggest that elevated levels of ALCAM expression promote BM formation in NSCLC through increased tumor cell dissemination and interaction with the brain endothelial cells. Therefore, ALCAM could be targeted to reduce the occurrence of BM. KEY POINTS: 1. ALCAM expression associates with poor prognosis and brain metastasis in NSCLC.2. ALCAM mediates interaction of NSCLC tumor cells with brain vascular endothelium.3. ALCAM might represent a novel preventive target to reduce the occurrence of BM in NSCLC.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Molécula de Adhesión Celular del Leucocito Activado , Animales , Neoplasias Encefálicas/secundario , Células Endoteliales , Endotelio Vascular , Femenino , Humanos , Masculino , Ratones
6.
Br J Cancer ; 121(11): 944-953, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31659304

RESUMEN

BACKGROUND: Maturation of complex N-glycans involves the action of Golgi mannosidases and plays a major role in cancer progression. We recently showed a favourable prognostic role of α-mannosidase MAN1A1 in breast cancer mainly caused by alteration of certain adhesion molecules. METHODS: We analysed the protein expression of MAN1A1 in ovarian cancer (n = 204) using western blot and studied the impact of MAN1A1 itself and of MAN1A1-related glycosylation on the prognostic relevance of two adhesion molecules. Functional consequences of mannosidase inhibition using kifunensine and MAN1A1 knock out were investigated in ovarian cancer cells in vitro. RESULTS: Patients with high MAN1A1 expression in tumours showed significantly shorter RFS than those with low-MAN1A1 levels. Moreover, high MAN1A1 expression correlated significantly with advanced stage, lymph node involvement and distant metastasis. Further, the glycosylated adhesion molecule ALCAM reveals a significant adverse prognostic effect only in the presence of high MAN1A1 expression. In spheroid-formation assays, mannosidase inhibition and especially MAN1A1 knock out led to strong reduction of tumour cell aggregation. CONCLUSIONS: Our study demonstrates the unfavourable prognostic role of MAN1A1 in ovarian cancer, probably caused by an altered ability of spheroid formation, and the strong influence of this glycosylation enzyme on the prognostic impact of ALCAM.


Asunto(s)
Aparato de Golgi/metabolismo , Neoplasias Ováricas/metabolismo , alfa-Manosidasa/genética , alfa-Manosidasa/metabolismo , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Agregación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia sin Enfermedad , Femenino , Proteínas Fetales/metabolismo , Técnicas de Inactivación de Genes , Glicosilación , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/patología , Pronóstico , ARN Mensajero/genética , Estudios Retrospectivos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA