Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 138(11): 2389-98, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21558385

RESUMEN

The secondary heart field is a conserved developmental domain in avian and mammalian embryos that contributes myocardium and smooth muscle to the definitive cardiac arterial pole. This field is part of the overall heart field and its myocardial component has been fate mapped from the epiblast to the heart in both mammals and birds. In this study we show that the population that gives rise to the arterial pole of the zebrafish can be traced from the epiblast, is a discrete part of the mesodermal heart field, and contributes myocardium after initial heart tube formation, giving rise to both smooth muscle and myocardium. We also show that Isl1, a transcription factor associated with undifferentiated cells in the secondary heart field in other species, is active in this field. Furthermore, Bmp signaling promotes myocardial differentiation from the arterial pole progenitor population, whereas inhibiting Smad1/5/8 phosphorylation leads to reduced myocardial differentiation with subsequent increased smooth muscle differentiation. Molecular pathways required for secondary heart field development are conserved in teleosts, as we demonstrate that the transcription factor Tbx1 and the Sonic hedgehog pathway are necessary for normal development of the zebrafish arterial pole.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Corazón/embriología , Corazón/crecimiento & desarrollo , Miocardio/metabolismo , Pez Cebra/embriología , Animales , Diferenciación Celular , Estratos Germinativos , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Desarrollo de Músculos , Músculo Liso/embriología , Miocardio/citología , Fosforilación , Transducción de Señal , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
2.
Evol Dev ; 12(6): 552-67, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21040422

RESUMEN

In chick and mouse embryogenesis, a population of cells described as the secondary heart field (SHF) adds both myocardium and smooth muscle to the developing cardiac outflow tract (OFT). Following this addition, at approximately HH stage 22 in chick embryos, for example, the SHF can be identified architecturally by an overlapping seam at the arterial pole, where beating myocardium forms a junction with the smooth muscle of the arterial system. Previously, using either immunohistochemistry or nitric oxide indicators such as diaminofluorescein 2-diacetate, we have shown that a similar overlapping architecture also exists in the arterial pole of zebrafish and some shark species. However, although recent work suggests that development of the zebrafish OFT may also proceed by addition of a SHF-like population of cells, the presence of a true SHF in zebrafish and in many other developmental biological models remains an open question. We performed a comprehensive morphological study of the OFT of a wide range of vertebrates. Our data suggest that all vertebrates possess three fundamental OFT components: a proximal myocardial component, a distal smooth muscle component, and a middle component that contains overlapping myocardium and smooth muscle surrounding and supporting the outflow valves. Because the middle OFT component of avians and mammals is derived from the SHF, our observations suggest that a SHF may be an evolutionarily conserved theme in vertebrate embryogenesis.


Asunto(s)
Corazón/anatomía & histología , Corazón/embriología , Morfogénesis/fisiología , Músculo Liso Vascular/citología , Miocardio/citología , Vertebrados/embriología , Animales , Embrión de Pollo , Peces , Técnicas para Inmunoenzimas , Ratones , Músculo Liso Vascular/metabolismo , Filogenia , Vertebrados/fisiología , Pez Cebra
3.
Dis Model Mech ; 3(7-8): 496-503, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20483996

RESUMEN

Regenerative medicine for complex tissues like limbs will require the provision or activation of precursors for different cell types, in the correct number, and with the appropriate instructions. These strategies can be guided by what is learned from spectacular events of natural limb or fin regeneration in urodele amphibians and teleost fish. Following zebrafish fin amputation, melanocyte stripes faithfully regenerate in tandem with complex fin structures. Distinct populations of melanocyte precursors emerge and differentiate to pigment regenerating fins, yet the regulation of their proliferation and patterning is incompletely understood. Here, we found that transgenic increases in active Ras dose-dependently hyperpigmented regenerating zebrafish fins. Lineage tracing and marker analysis indicated that increases in active Ras stimulated the in situ amplification of undifferentiated melanocyte precursors expressing mitfa and kita. Active Ras also hyperpigmented early fin regenerates of kita mutants, which are normally devoid of primary regeneration melanocytes, suppressing defects in precursor function and survival. By contrast, this protocol had no noticeable impact on pigmentation by secondary regulatory melanocyte precursors in late-stage kita regenerates. Our results provide evidence that Ras activity levels control the repopulation and expansion of adult melanocyte precursors after tissue loss, enabling the recovery of patterned melanocyte stripes during zebrafish appendage regeneration.


Asunto(s)
Estructuras Animales/citología , Estructuras Animales/fisiología , Melanocitos/citología , Regeneración/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Proteínas ras/metabolismo , Estructuras Animales/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Proliferación Celular , Melanocitos/metabolismo , Pigmentación/fisiología , Células Madre/citología , Células Madre/metabolismo , Pez Cebra/genética
4.
Dev Biol ; 331(2): 270-80, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19445916

RESUMEN

Appendage regeneration in salamanders and fish occurs through formation and maintenance of a mass of progenitor tissue called the blastema. A dedicated epidermis overlays the blastema and is required for its proliferation and patterning, yet this interaction is poorly understood. Here, we identified molecularly and functionally distinct compartments within the basal epidermal layer during zebrafish fin regeneration. Proximal epidermal subtypes express the transcription factor lef1 and the blastemal mitogen shh, while distal subtypes express the Fgf target gene pea3 and wnt5b, an inhibitor of blastemal proliferation. Ectopic overexpression of wnt5b reduced shh expression, while pharmacologic introduction of a Hh pathway agonist partially rescued blastemal proliferation during wnt5b overexpression. Loss- and gain-of-function approaches indicate that Fgf signaling promotes shh expression in proximal epidermis, while Fgf/Ras signaling restricts shh expression from distal epidermis through induction of pea3 expression and maintenance of wnt5b. Thus, the fin wound epidermis spatially confines Hh signaling through the activity of Fgf and Wnt pathways, impacting blastemal proliferation during regenerative outgrowth.


Asunto(s)
Epidermis/fisiología , Extremidades/fisiología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/fisiología , Epidermis/crecimiento & desarrollo , Extremidades/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Regeneración , Transducción de Señal , Pez Cebra/embriología
5.
Nucleic Acids Res ; 36(16): 5306-18, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18689439

RESUMEN

RNase E of Escherichia coli is an essential endoribonuclease that is involved in many aspects of RNA metabolism. Point mutations in the S1 RNA-binding domain of RNase E (rne-1 and rne-3071) lead to temperature-sensitive growth along with defects in 5S rRNA processing, mRNA decay and tRNA maturation. However, it is not clear whether RNase E acts similarly on all kinds of RNA substrates. Here we report the isolation and characterization of three independent intragenic second-site suppressors of the rne-1 and rne-3071 alleles that demonstrate for the first time the dissociation of the in vivo activity of RNase E on mRNA versus tRNA and rRNA substrates. Specifically, tRNA maturation and 9S rRNA processing were restored to wild-type levels in each of the three suppressor mutants (rne-1/172, rne-1/186 and rne-1/187), while mRNA decay and autoregulation of RNase E protein levels remained as defective as in the rne-1 single mutant. Each single amino acid substitution (Gly-->Ala at amino acid 172; Phe --> Cys at amino acid 186 and Arg --> Leu at amino acid 187) mapped within the 5' sensor region of the RNase E protein. Molecular models of RNase E suggest how suppression may occur.


Asunto(s)
Endorribonucleasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Mutación , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Supresión Genética , Alelos , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Escherichia coli/crecimiento & desarrollo , Genes Letales , Homeostasis , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Ribosómico 5S/metabolismo , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...