Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 340: 139906, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37611771

RESUMEN

Increasing loading of phosphorus (P) into freshwater systems is deemed as one of the key drivers triggering harmful algal blooms (HABs). However, conventional water quality monitoring of P normally uses the operational cutoff (e.g., 450-nm filter membrane) to separate particulate and dissolved phases (entities passing through the 450-nm membrane are regarded as dissolved phase), which completely neglects the roles of small colloids (450-100 nm) and nanoparticles (100-1 nm). Herein, a new particle size separation approach was used to separate water samples collected from catfish aquaculture ponds in west Alabama into six size fractions: large particles (>1000 nm), large colloids (1000-450 nm), small colloids (450-100 nm), large nanoparticles (100-50 nm), small nanoparticles (50-1 nm), and the truly dissolved phase (<1 nm). The speciation and concentration of P in these six size fractions were then investigated using Hedley's sequential extraction method. The new particle size separation results showed that particle loading (mass) followed the order: >1000 nm, 450-100 nm, 1000-450 nm, 100-50 nm, and 50-1 nm. This is mainly due to the abundance of large-sized (>1000 nm) zooplankton and phytoplankton such as algae and cyanobacteria in the catfish aquaculture ponds. Importantly, the small colloid (450-100 nm) and nanoparticle (100-1 nm) size fractions, which were previously regarded as the dissolved phase using the 450-nm membrane filtration operation, accounted for ∼41.8% of the total particle mass. The Hedley's sequential extraction results showed that sodium hydroxide (NaOH)-extracted P represented the largest P pool, followed by water (H2O)- and sodium bicarbonate (NaHCO3)-extracted P pools. Smaller particles exhibited a higher loading of P due to their large surface areas. These new findings suggest that the new particle size separation approach needs to be adopted for future water quality monitoring and mitigation of HABs in freshwater ecosystems.


Asunto(s)
Bagres , Nanopartículas , Animales , Fósforo , Estanques , Alabama , Ecosistema , Acuicultura , Coloides
2.
Chemosphere ; 293: 133557, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35016952

RESUMEN

Globally, microplastics pollution has become a serious environmental threat due to their multitude sources, widespread occurrence, persistence, and adverse effects to ecosystem and the human health. Addressing this multifaceted threat requires innovative technologies that can efficiently remove microplastics from the environment. In this review, we first overviewed the source, occurrence, and potential adverse impacts of microplastics to human health. We then identified promising technologies for microplastics removal, including physical, chemical, and biological approaches. A detailed analysis of the advantages and limitations of different techniques was provided. We concluded this review with the current challenges and future research priorities, which will guide us through the path addressing microplastics contamination.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Humanos , Plásticos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...