Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 1012717, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439124

RESUMEN

Helminths produce excretory/secretory products (E/S) which can modulate the immune responses of their hosts. Dendritic cells (DC) are essential for initiating the host T cell response and are thus potential targets for modulation by helminth E/S. Here we study immunomodulation of porcine peripheral blood DC subsets following ex vivo stimulation with E/S from Ascaris suum, a common helminth of pigs with considerable public health and economic importance. Our data showed that the relative frequencies of DC subsets in porcine blood differ, with plasmacytoid DC (pDC) being the most prominent in healthy 6-month-old pigs. pDC are an important cytokine source, and we found that A. suum E/S suppressed production of the type 1 cytokines IL-12p40 and TNF-α by this subset following toll-like receptor (TLR) ligation. In contrast, conventional DC (cDC) are more efficient antigen presenters, and the expression of CD80/86, costimulatory molecules essential for efficient antigen presentation, were modulated differentially by A. suum E/S between cDC subsets. CD80/86 expression by type 1 cDC (cDC1) following TLR ligation was greatly suppressed by the addition of A. suum E/S, while CD80/86 expression by type 2 cDC (cDC2) was upregulated by A. suum E/S. Further, we found that IFN-γ production by natural killer (NK) cells following IL-12 and IL-18 stimulation was suppressed by A. suum E/S. Finally, in the presence of E/S, IFN-γ production by CD4+ T cells co-cultured with autologous blood-derived DC was significantly impaired. Together, these data provide a coherent picture regarding the regulation of type 1 responses by A. suum E/S. Responsiveness of pDC and cDC1 to microbial ligands is reduced in the presence of E/S, effector functions of Th1 cells are impaired, and cytokine-driven IFN-γ release by NK cells is limited.


Asunto(s)
Ascaris suum , Porcinos , Animales , Células Dendríticas , Interleucina-12/metabolismo , Citocinas/metabolismo , Receptores Toll-Like/metabolismo , Células Asesinas Naturales/metabolismo
2.
Lancet Rheumatol ; 3(9): e648-e658, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34476411

RESUMEN

BACKGROUND: Joint injury is a major risk factor for osteoarthritis and provides an opportunity to prospectively examine early processes associated with osteoarthritis. We investigated whether predefined baseline demographic and clinical factors, and protein analytes in knee synovial fluid and in plasma or serum, were associated with clinically relevant outcomes at 2 years after knee injury. METHODS: This longitudinal cohort study recruited individuals aged 16-50 years between Nov 1, 2010, and Nov 28, 2014, across six hospitals and clinics in London, UK. Participants were recruited within 8 weeks of having a clinically significant acute knee injury (effusion and structural injury on MRI), which was typically treated surgically. We measured several predefined clinical variables at baseline (eg, time from injury to sampling, extent and type of joint injury, synovial fluid blood staining, presence of effusion, self-reported sex, age, and BMI), and measured 12 synovial fluid and four plasma or serum biomarkers by immunoassay at baseline and 3 months. The primary outcome was Knee Injury and Osteoarthritis Outcome Score (KOOS4) at 2 years, adjusted for baseline score, assessed in all patients. Linear and logistic regression models adjusting for predefined covariates were used to assess associations between baseline variables and 2-year KOOS4. This study is registered with ClinicalTrials.gov, number NCT02667756. FINDINGS: We enrolled 150 patients at a median of 17 days (range 1-59, IQR 9-26) after knee injury. 123 (82%) were male, with a median age of 25 years (range 16-50, IQR 21-30). 98 (65%) of 150 participants completed a KOOS4 at 2 (or 3) years after enrolment (50 participants were lost to follow-up and two were withdrawn due to adverse events unrelated to study participation); 77 (51%) participants had all necessary variables available and were included in the core variable adjusted analysis. In the 2-year dataset mean KOOS4 improved from 38 (SD 18) at baseline to 79 (18) at 2 years. Baseline KOOS4, medium-to-large knee effusion, and moderate-to-severe synovial blood staining and their interaction significantly predicted 2-year KOOS4 (n=77; coefficient -20·5, 95% CI -34·8 to -6·18; p=0·0060). The only predefined biomarkers that showed independent associations with 2-year KOOS4 were synovial fluid MCP-1 (n=77; -0·015, 0·027 to -0·004 per change in 1 pg/mL units; p=0·011) and IL-6 (n=77; -0·0005, -0·0009 to -0·0001 per change in 1 pg/mL units; p=0·017). These biomarkers, combined with the interaction of effusion and blood staining, accounted for 39% of outcome variability. Two adverse events occurred that were linked to study participation, both at the time of blood sampling (one presyncopal episode, one tenderness and pain at the site of venepuncture). INTERPRETATION: The combination of effusion and haemarthrosis was significantly associated with symptomatic outcomes after acute knee injury. The synovial fluid molecular protein response to acute knee injury (best represented by MCP-1 and IL-6) was independently associated with symptomatic outcomes but not with structural outcomes, with the biomarkers overall playing a minor role relative to clinical predictors. The relationship between symptoms and structure after acute knee injury and their apparent dissociation early in this process need to be better understood to make clinical progress. FUNDING: Versus Arthritis, Kennedy Trust for Rheumatology Research, and NIHR Oxford Biomedical Research Centre.

3.
Microorganisms ; 9(9)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34576723

RESUMEN

Containment of acute Toxoplasma gondii infection is dependent on an efficient interferon gamma response. However, the earliest steps of immune response initiation immediately following exposure to the parasite have not been previously characterized in pigs. Murine and human myeloid cells produce large quantities of interleukin (IL)-12 during early T. gondii infection. We therefore examined IL-12 expression by porcine peripheral blood monocytes and dendritic cell (DC) subsets following toll-like receptor (TLR) ligation and controlled T. gondii tachyzoite infection. We detected IL-12p40 expression by porcine plasmacytoid DC, but not conventional or monocyte-derived DC following TLR ligation. Unexpectedly, we also observed considerable IL-12p40 production by porcine CD3- NKp46+ cells-a classical natural killer cell phenotype-following TLR ligation. However, in response to T. gondii exposure, no IL-12 production was observed by either DC or CD3- NKp46+ cells. Despite this, IL-18 production by DC-enriched peripheral blood mononuclear cells was detected following live T. gondii tachyzoite exposure. Only combined stimulation of porcine peripheral blood mononuclear cells with recombinant IL-12p70 and IL-18 induced innate interferon gamma production by natural killer cells, while T cells and myeloid cells did not respond. Therefore, porcine CD3- NKp46+ cells serve as important IL-12 producers following TLR ligation, while IL-18 likely plays a prominent role in early immune response initiation in the pig following T. gondii infection.

4.
Artículo en Inglés | MEDLINE | ID: mdl-30891433

RESUMEN

Toxoplasma gondii is a zoonotic intracellular parasite, able to infect any warm-blooded animal via ingestion of infective stages, either contained in tissue cysts or oocysts released into the environment. While immune responses during infection are well-studied, there is still limited knowledge about the very early infection events in the gut tissue after infection via the oral route. Here we briefly discuss differences in host-specific responses following infection with oocyst-derived sporozoites vs. tissue cyst-derived bradyzoites. A focus is given to innate intestinal defense mechanisms and early immune cell events that precede T. gondii's dissemination in the host. We propose stem cell-derived intestinal organoids as a model to study early events of natural host-pathogen interaction. These offer several advantages such as live cell imaging and transcriptomic profiling of the earliest invasion processes. We additionally highlight the necessity of an appropriate large animal model reflecting human infection more closely than conventional infection models, to study the roles of dendritic cells and macrophages during early infection.


Asunto(s)
Tracto Gastrointestinal/parasitología , Interacciones Huésped-Patógeno , Toxoplasma/crecimiento & desarrollo , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología , Animales , Células Dendríticas/inmunología , Células Dendríticas/parasitología , Modelos Animales de Enfermedad , Humanos , Inmunidad Celular , Inmunidad Innata , Macrófagos/inmunología , Macrófagos/parasitología , Modelos Teóricos , Organoides/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...