Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant J ; 118(5): 1589-1602, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489316

RESUMEN

Iridoids are non-canonical monoterpenoids produced by both insects and plants. An example is the cat-attracting and insect-repelling volatile iridoid nepetalactone, produced by Nepeta sp. (catmint) and aphids. Recently, both nepetalactone biosynthetic pathways were elucidated, showing a remarkable convergent evolution. The iridoid, dolichodial, produced by Teucrium marum (cat thyme) and multiple insect species, has highly similar properties to nepetalactone but its biosynthetic origin remains unknown. We set out to determine the genomic, enzymatic, and evolutionary basis of iridoid biosynthesis in T. marum. First, we generated a de novo chromosome-scale genome assembly for T. marum using Oxford Nanopore Technologies long reads and proximity-by-ligation Hi-C reads. The 610.3 Mb assembly spans 15 pseudomolecules with a 32.9 Mb N50 scaffold size. This enabled identification of iridoid biosynthetic genes, whose roles were verified via activity assays. Phylogenomic analysis revealed that the evolutionary history of T. marum iridoid synthase, the iridoid scaffold-forming enzyme, is not orthologous to typical iridoid synthases but is derived from its conserved paralog. We discovered an enzymatic route from nepetalactol to diverse iridoids through the coupled activity of an iridoid oxidase cytochrome P450 and acetyltransferases, via an inferred acylated intermediate. This work provides a genomic resource for specialized metabolite research in mints and demonstration of the role of acetylation in T. marum iridoid diversity. This work will enable future biocatalytic or biosynthetic production of potent insect repellents, as well as comparative studies into iridoid biosynthesis in insects.


Asunto(s)
Iridoides , Iridoides/metabolismo , Vías Biosintéticas/genética , Filogenia , Genoma de Planta/genética , Genómica , Animales , Monoterpenos Ciclopentánicos/metabolismo , Pironas
2.
BMC Genom Data ; 24(1): 75, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093190

RESUMEN

OBJECTIVES: Lavandula angustifolia (English lavender) is commercially important not only as an ornamental species but also as a major source of fragrances. To better understand the genomic basis of chemical diversity in lavender, we sequenced, assembled, and annotated the 'Munstead' cultivar of L. angustifolia. DATA DESCRIPTION: A total of 80 Gb of Oxford Nanopore Technologies reads was used to assemble the 'Munstead' genome using the Canu genome assembler software. Following multiple rounds of error correction and scaffolding using Hi-C data, the final chromosome-scale assembly represents 795,075,733 bp across 25 chromosomes with an N50 scaffold length of 31,371,815 bp. Benchmarking Universal Single Copy Orthologs analysis revealed 98.0% complete orthologs, indicative of a high-quality assembly representative of genic space. Annotation of protein-coding sequences revealed 58,702 high-confidence genes encoding 88,528 gene models. Access to the 'Munstead' genome will permit comparative analyses within and among lavender accessions and provides a pivotal species for comparative analyses within Lamiaceae.


Asunto(s)
Lavandula , Lavandula/genética , Genoma , Genómica , Cromosomas , Sistemas de Lectura Abierta
3.
Front Plant Sci ; 14: 1271625, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034564

RESUMEN

Camelina sativa (L.) Crantz, a member of the Brassicaceae, has potential as a biofuel feedstock which is attributable to the production of fatty acids in its seeds, its fast growth cycle, and low input requirements. While a genome assembly is available for camelina, it was generated from short sequence reads and is thus highly fragmented in nature. Using long read sequences, we generated a chromosome-scale, highly contiguous genome assembly (644,491,969 bp) for the spring biotype cultivar 'Suneson' with an N50 contig length of 12,031,512 bp and a scaffold N50 length of 32,184,682 bp. Annotation of protein-coding genes revealed 91,877 genes that encode 133,355 gene models. We identified a total of 4,467 genes that were significantly up-regulated under cold stress which were enriched in gene ontology terms associated with "response to cold" and "response to abiotic stress". Coexpression analyses revealed multiple coexpression modules that were enriched in genes differentially expressed following cold stress that had putative functions involved in stress adaptation, specifically within the plastid. With access to a highly contiguous genome assembly, comparative analyses with Arabidopsis thaliana revealed 23,625 A. thaliana genes syntenic with 45,453 Suneson genes. Of these, 24,960 Suneson genes were syntenic to 8,320 A. thaliana genes reflecting a 3 camelina homeolog to 1 Arabidopsis gene relationship and retention of all three homeologs. Some of the retained triplicated homeologs showed conserved gene expression patterns under control and cold-stressed conditions whereas other triplicated homeologs displayed diverged expression patterns revealing sub- and neo-functionalization of the homeologs at the transcription level. Access to the chromosome-scale assembly of Suneson will enable both basic and applied research efforts in the improvement of camelina as a sustainable biofuel feedstock.

4.
Plant Direct ; 7(10): e532, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37794882

RESUMEN

Sweetpotato, Ipomoea batatas (L.), a key food security crop, is negatively impacted by heat, drought, and salinity stress. The orange-fleshed sweetpotato cultivar "Beauregard" was exposed to heat, salt, and drought treatments for 24 and 48 h to identify genes responding to each stress condition in leaves. Analysis revealed both common (35 up regulated, 259 down regulated genes in the three stress conditions) and unique sets of up regulated (1337 genes by drought, 516 genes by heat, and 97 genes by salt stress) and down regulated (2445 genes by drought, 678 genes by heat, and 204 genes by salt stress) differentially expressed genes (DEGs) suggesting common, yet stress-specific transcriptional responses to these three abiotic stressors. Gene Ontology analysis of down regulated DEGs common to both heat and salt stress revealed enrichment of terms associated with "cell population proliferation" suggestive of an impact on the cell cycle by the two stress conditions. To identify shared and unique gene co-expression networks under multiple abiotic stress conditions, weighted gene co-expression network analysis was performed using gene expression profiles from heat, salt, and drought stress treated 'Beauregard' leaves yielding 18 co-expression modules. One module was enriched for "response to water deprivation," "response to abscisic acid," and "nitrate transport" indicating synergetic crosstalk between nitrogen, water, and phytohormones with genes encoding osmotin, cell expansion, and cell wall modification proteins present as key hub genes in this drought-associated module. This research lays the groundwork for exploring to a further degree, mechanisms for abiotic stress tolerance in sweetpotato.

5.
Plant Genome ; 16(3): e20363, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37332263

RESUMEN

Tepary bean (Phaseolus acutifolius A. Gray), indigenous to the arid climates of northern Mexico and the Southwest United States, diverged from common bean (Phaseolus vulgaris L.), approximately 2 million years ago and exhibits a wide range of resistance to biotic stressors. The tepary genome is highly syntenic to the common bean genome providing a foundation for discovery and breeding of agronomic traits between these two crop species. Although a limited number of adaptive traits from tepary bean have been introgressed into common bean, hybridization barriers between these two species required the development of bridging lines to alleviate this barrier. Thus, to fully utilize the extant tepary bean germplasm as both a crop and as a donor of adaptive traits, we developed a diversity panel of 422 cultivated, weedy, and wild tepary bean accessions which were then genotyped and phenotyped to enable population genetic analyses and genome-wide association studies for their response to a range of biotic stressors. Population structure analyses of the panel revealed eight subpopulations and the differentiation of botanical varieties within P. acutifolius. Genome-wide association studies revealed loci and candidate genes underlying biotic stress resistance including quantitative trait loci for resistance to weevils, common bacterial blight, Fusarium wilt, and bean common mosaic necrosis virus that can be harnessed not only for tepary bean but also common bean improvement.


Asunto(s)
Phaseolus , Phaseolus/química , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Sitios de Carácter Cuantitativo , Variación Genética
6.
Nat Chem Biol ; 19(8): 1031-1041, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37188960

RESUMEN

Advances in omics technologies now permit the generation of highly contiguous genome assemblies, detection of transcripts and metabolites at the level of single cells and high-resolution determination of gene regulatory features. Here, using a complementary, multi-omics approach, we interrogated the monoterpene indole alkaloid (MIA) biosynthetic pathway in Catharanthus roseus, a source of leading anticancer drugs. We identified clusters of genes involved in MIA biosynthesis on the eight C. roseus chromosomes and extensive gene duplication of MIA pathway genes. Clustering was not limited to the linear genome, and through chromatin interaction data, MIA pathway genes were present within the same topologically associated domain, permitting the identification of a secologanin transporter. Single-cell RNA-sequencing revealed sequential cell-type-specific partitioning of the leaf MIA biosynthetic pathway that, when coupled with a single-cell metabolomics approach, permitted the identification of a reductase that yields the bis-indole alkaloid anhydrovinblastine. We also revealed cell-type-specific expression in the root MIA pathway.


Asunto(s)
Antineoplásicos , Catharanthus , Plantas Medicinales , Catharanthus/genética , Plantas Medicinales/metabolismo , Multiómica , Alcaloides Indólicos/metabolismo , Antineoplásicos/metabolismo , Monoterpenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
BMC Genom Data ; 24(1): 14, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869291

RESUMEN

OBJECTIVES: Petrea volubilis, a member of the Order Lamiales and the Verbenaceae family, is an important horticultural species that has been used in traditional folk medicine. To provide a genome sequence for comparative studies within the Order Lamiales that includes important families such as Lamiaceae (mints), we generated a long-read, chromosome-scale genome assembly of this species. DATA DESCRIPTION: Using a total of 45.5 Gb of Pacific Biosciences long read sequence, we generated a 480.2 Mb assembly of P. volubilis, of which, 93% is chromosome anchored. Representation of genic regions was robust with 96.6% of the Benchmarking of Universal Single Copy Orthologs present in the genome assembly. A total of 57.8% of the genome was annotated as a repetitive sequence. Using a gene annotation pipeline that included refinement of gene models using transcript evidence, 30,982 high confidence genes were annotated. Access to the P. volubilis genome will facilitate evolutionary studies in the Lamiales, a key order of Asterids that includes significant crop and medicinal plant species.


Asunto(s)
Lamiales , Verbenaceae , Humanos , Benchmarking , Evolución Biológica , Cromosomas
8.
G3 (Bethesda) ; 13(4)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36755392

RESUMEN

Availability of readily transformable germplasm, as well as efficient pipelines for gene discovery are notable bottlenecks in the application of genome editing in potato. To study and introduce traits such as resistance against biotic and abiotic factors, tuber quality traits and self-fertility, model germplasm that is amenable to gene editing and regeneration is needed. Cultivated potato is a heterozygous autotetraploid and its genetic redundancy and complexity makes studying gene function challenging. Genome editing is simpler at the diploid level, with fewer allelic variants to consider. A readily transformable diploid potato would be further complemented by genomic resources that could aid in high throughput functional analysis. The heterozygous Solanum tuberosum Group Phureja clone 1S1 has a high regeneration rate, self-fertility, desirable tuber traits and is amenable to Agrobacterium-mediated transformation. We leveraged its amenability to Agrobacterium-mediated transformation to create a Cas9 constitutively expressing line for use in viral vector-based gene editing. To create a contiguous genome assembly, a homozygous doubled monoploid of 1S1 (DM1S1) was sequenced using 44 Gbp of long reads generated from Oxford Nanopore Technologies (ONT), yielding a 736 Mb assembly that encoded 31,145 protein-coding genes. The final assembly for DM1S1 represents a nearly complete genic space, shown by the presence of 99.6% of the genes in the Benchmarking Universal Single Copy Orthologs (BUSCO) set. Variant analysis with Illumina reads from 1S1 was used to deduce its alternate haplotype. These genetic and genomic resources provide a toolkit for applications of genome editing in both basic and applied research of potato.


Asunto(s)
Solanum tuberosum , Solanum , Edición Génica , Solanum tuberosum/genética , Diploidia , Genoma de Planta , Solanum/genética
9.
Nat Commun ; 14(1): 343, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670101

RESUMEN

The spatial organization of genes within plant genomes can drive evolution of specialized metabolic pathways. Terpenoids are important specialized metabolites in plants with diverse adaptive functions that enable environmental interactions. Here, we report the genome assemblies of Prunella vulgaris, Plectranthus barbatus, and Leonotis leonurus. We investigate the origin and subsequent evolution of a diterpenoid biosynthetic gene cluster (BGC) together with other seven species within the Lamiaceae (mint) family. Based on core genes found in the BGCs of all species examined across the Lamiaceae, we predict a simplified version of this cluster evolved in an early Lamiaceae ancestor. The current composition of the extant BGCs highlights the dynamic nature of its evolution. We elucidate the terpene backbones generated by the Callicarpa americana BGC enzymes, including miltiradiene and the terpene (+)-kaurene, and show oxidization activities of BGC cytochrome P450s. Our work reveals the fluid nature of BGC assembly and the importance of genome structure in contributing to the origin of metabolites.


Asunto(s)
Diterpenos , Lamiaceae , Lamiaceae/genética , Lamiaceae/metabolismo , Diterpenos/metabolismo , Terpenos/metabolismo , Familia de Multigenes , Vías Biosintéticas/genética
10.
Plant Genome ; : e20276, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36321716

RESUMEN

With an essential role in human health, tocochromanols are mostly obtained by consuming seed oils; however, the vitamin E content of the most abundant tocochromanols in maize (Zea mays L.) grain is low. Several large-effect genes with cis-acting variants affecting messenger RNA (mRNA) expression are mostly responsible for tocochromanol variation in maize grain, with other relevant associated quantitative trait loci (QTL) yet to be fully resolved. Leveraging existing genomic and transcriptomic information for maize inbreds could improve prediction when selecting for higher vitamin E content. Here, we first evaluated a multikernel genomic best linear unbiased prediction (MK-GBLUP) approach for modeling known QTL in the prediction of nine tocochromanol grain phenotypes (12-21 QTL per trait) within and between two panels of 1,462 and 242 maize inbred lines. On average, MK-GBLUP models improved predictive abilities by 7.0-13.6% when compared with GBLUP. In a second approach with a subset of 545 lines from the larger panel, the highest average improvement in predictive ability relative to GBLUP was achieved with a multi-trait GBLUP model (15.4%) that had a tocochromanol phenotype and transcript abundances in developing grain for a few large-effect candidate causal genes (1-3 genes per trait) as multiple response variables. Taken together, our study illustrates the enhancement of prediction models when informed by existing biological knowledge pertaining to QTL and candidate causal genes.

11.
Plant Direct ; 6(7): e425, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35844780

RESUMEN

The circadian clock is an internal molecular oscillator and coordinates numerous physiological processes through regulation of molecular pathways. Tissue-specific clocks connected by mobile signals have previously been found to run at different speeds in Arabidopsis thaliana tissues. However, tissue variation in circadian clocks in crop species is unknown. In this study, leaf and tuber global gene expression in cultivated potato under cycling and constant environmental conditions was profiled. In addition, we used a circadian-regulated luciferase reporter construct to study tuber gene expression rhythms. Diel and circadian expression patterns were present among 17.9% and 5.6% of the expressed genes in the tuber. Over 500 genes displayed differential tissue specific diel phases. Intriguingly, few core circadian clock genes had circadian expression patterns, while all such genes were circadian rhythmic in cultivated tomato leaves. Furthermore, robust diel and circadian transcriptional rhythms were observed among detached tubers. Our results suggest alternative regulatory mechanisms and/or clock composition is present in potato, as well as the presence of tissue-specific independent circadian clocks. We have provided the first evidence of a functional circadian clock in below-ground storage organs, holding important implications for other storage root and tuberous crops.

12.
Genetics ; 221(4)2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35666198

RESUMEN

Tocochromanols (tocopherols and tocotrienols, collectively vitamin E) are lipid-soluble antioxidants important for both plant fitness and human health. The main dietary sources of vitamin E are seed oils that often accumulate high levels of tocopherol isoforms with lower vitamin E activity. The tocochromanol biosynthetic pathway is conserved across plant species but an integrated view of the genes and mechanisms underlying natural variation of tocochromanol levels in seed of most cereal crops remains limited. To address this issue, we utilized the high mapping resolution of the maize Ames panel of ∼1,500 inbred lines scored with 12.2 million single-nucleotide polymorphisms to generate metabolomic (mature grain tocochromanols) and transcriptomic (developing grain) data sets for genetic mapping. By combining results from genome- and transcriptome-wide association studies, we identified a total of 13 candidate causal gene loci, including 5 that had not been previously associated with maize grain tocochromanols: 4 biosynthetic genes (arodeH2 paralog, dxs1, vte5, and vte7) and a plastid S-adenosyl methionine transporter (samt1). Expression quantitative trait locus (eQTL) mapping of these 13 gene loci revealed that they are predominantly regulated by cis-eQTL. Through a joint statistical analysis, we implicated cis-acting variants as responsible for colocalized eQTL and GWAS association signals. Our multiomics approach provided increased statistical power and mapping resolution to enable a detailed characterization of the genetic and regulatory architecture underlying tocochromanol accumulation in maize grain and provided insights for ongoing biofortification efforts to breed and/or engineer vitamin E and antioxidant levels in maize and other cereals.


Asunto(s)
Grano Comestible , Zea mays , Antioxidantes/metabolismo , Grano Comestible/genética , Estudio de Asociación del Genoma Completo , Humanos , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Tocoferoles/metabolismo , Vitamina E/metabolismo , Zea mays/genética , Zea mays/metabolismo
13.
Plant Genome ; 15(2): e20197, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35262278

RESUMEN

Sweet corn (Zea mays L.) is consistently one of the most highly consumed vegetables in the United States, providing a valuable opportunity to increase nutrient intake through biofortification. Significant variation for carotenoid (provitamin A, lutein, zeaxanthin) and tocochromanol (vitamin E, antioxidants) levels is present in temperate sweet corn germplasm, yet previous genome-wide association studies (GWAS) of these traits have been limited by low statistical power and mapping resolution. Here, we employed a high-quality transcriptomic dataset collected from fresh sweet corn kernels to conduct transcriptome-wide association studies (TWAS) and transcriptome prediction studies for 39 carotenoid and tocochromanol traits. In agreement with previous GWAS findings, TWAS detected significant associations for four causal genes, ß-carotene hydroxylase (crtRB1), lycopene epsilon cyclase (lcyE), γ-tocopherol methyltransferase (vte4), and homogentisate geranylgeranyltransferase (hggt1) on a transcriptome-wide level. Pathway-level analysis revealed additional associations for deoxy-xylulose synthase2 (dxs2), diphosphocytidyl methyl erythritol synthase2 (dmes2), cytidine methyl kinase1 (cmk1), and geranylgeranyl hydrogenase1 (ggh1), of which, dmes2, cmk1, and ggh1 have not previously been identified through maize association studies. Evaluation of prediction models incorporating genome-wide markers and transcriptome-wide abundances revealed a trait-dependent benefit to the inclusion of both genomic and transcriptomic data over solely genomic data, but both transcriptome- and genome-wide datasets outperformed a priori candidate gene-targeted prediction models for most traits. Altogether, this study represents an important step toward understanding the role of regulatory variation in the accumulation of vitamins in fresh sweet corn kernels.


Asunto(s)
Carotenoides , Estudio de Asociación del Genoma Completo , Transcriptoma , Verduras/genética , Zea mays/genética
14.
Mol Plant ; 15(3): 520-536, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35026436

RESUMEN

Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts. As a clonally propagated autotetraploid that undergoes limited meiosis, dysfunctional and deleterious alleles are not purged in tetraploid potato. Nearly a quarter of the loci bore mutations are predicted to have a high negative impact on protein function, complicating breeder's efforts to reduce genetic load. The StCDF1 locus controls maturity, and analysis of six tetraploid genomes revealed that 12 allelic variants of StCDF1 are correlated with maturity in a dosage-dependent manner. Knowledge of the complexity of the tetraploid potato genome with its rampant structural variation and embedded deleterious and dysfunctional alleles will be key not only to implementing precision breeding of tetraploid cultivars but also to the construction of homozygous, diploid potato germplasm containing favorable alleles to capitalize on heterosis in F1 hybrids.


Asunto(s)
Solanum tuberosum , Tetraploidía , Alelos , Cromosomas , Fitomejoramiento , Proteoma/genética , Solanum tuberosum/genética , Transcriptoma/genética
15.
G3 (Bethesda) ; 11(8)2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-34849806

RESUMEN

Despite being one of the most consumed vegetables in the United States, the elemental profile of sweet corn (Zea mays L.) is limited in its dietary contributions. To address this through genetic improvement, a genome-wide association study was conducted for the concentrations of 15 elements in fresh kernels of a sweet corn association panel. In concordance with mapping results from mature maize kernels, we detected a probable pleiotropic association of zinc and iron concentrations with nicotianamine synthase5 (nas5), which purportedly encodes an enzyme involved in synthesis of the metal chelator nicotianamine. In addition, a pervasive association signal was identified for cadmium concentration within a recombination suppressed region on chromosome 2. The likely causal gene underlying this signal was heavy metal ATPase3 (hma3), whose counterpart in rice, OsHMA3, mediates vacuolar sequestration of cadmium and zinc in roots, whereby regulating zinc homeostasis and cadmium accumulation in grains. In our association panel, hma3 associated with cadmium but not zinc accumulation in fresh kernels. This finding implies that selection for low cadmium will not affect zinc levels in fresh kernels. Although less resolved association signals were detected for boron, nickel, and calcium, all 15 elements were shown to have moderate predictive abilities via whole-genome prediction. Collectively, these results help enhance our genomics-assisted breeding efforts centered on improving the elemental profile of fresh sweet corn kernels.


Asunto(s)
Cadmio , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Verduras , Zea mays/genética , Zinc
16.
Plant Genome ; 14(3): e20114, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34275202

RESUMEN

The stiff-stalk heterotic group in Maize (Zea mays L.) is an important source of inbreds used in U.S. commercial hybrid production. Founder inbreds B14, B37, B73, and, to a lesser extent, B84, are found in the pedigrees of a majority of commercial seed parent inbred lines. We created high-quality genome assemblies of B84 and four expired Plant Variety Protection (ex-PVP) lines LH145 representing B14, NKH8431 of mixed descent, PHB47 representing B37, and PHJ40, which is a Pioneer Hi-Bred International (PHI) early stiff-stalk type. Sequence was generated using long-read sequencing achieving highly contiguous assemblies of 2.13-2.18 Gbp with N50 scaffold lengths >200 Mbp. Inbred-specific gene annotations were generated using a core five-tissue gene expression atlas, whereas transposable element (TE) annotation was conducted using de novo and homology-directed methodologies. Compared with the reference inbred B73, synteny analyses revealed extensive collinearity across the five stiff-stalk genomes, although unique components of the maize pangenome were detected. Comparison of this set of stiff-stalk inbreds with the original Iowa Stiff Stalk Synthetic breeding population revealed that these inbreds represent only a proportion of variation in the original stiff-stalk pool and there are highly conserved haplotypes in released public and ex-Plant Variety Protection inbreds. Despite the reduction in variation from the original stiff-stalk population, substantial genetic and genomic variation was identified supporting the potential for continued breeding success in this pool. The assemblies described here represent stiff-stalk inbreds that have historical and commercial relevance and provide further insight into the emerging maize pangenome.


Asunto(s)
Fitomejoramiento , Zea mays , Genómica , Haplotipos , Vigor Híbrido , Zea mays/genética
17.
Nat Commun ; 12(1): 2638, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976152

RESUMEN

Tepary bean (Phaseolus acutifolis A. Gray), native to the Sonoran Desert, is highly adapted to heat and drought. It is a sister species of common bean (Phaseolus vulgaris L.), the most important legume protein source for direct human consumption, and whose production is threatened by climate change. Here, we report on the tepary genome including exploration of possible mechanisms for resilience to moderate heat stress and a reduced disease resistance gene repertoire, consistent with adaptation to arid and hot environments. Extensive collinearity and shared gene content among these Phaseolus species will facilitate engineering climate adaptation in common bean, a key food security crop, and accelerate tepary bean improvement.


Asunto(s)
Aclimatación/genética , Evolución Molecular , Genoma de Planta , Phaseolus/genética , Fitomejoramiento/métodos , Cambio Climático , Productos Agrícolas/genética , Domesticación , Sequías , Seguridad Alimentaria , Ingeniería Genética/métodos , Respuesta al Choque Térmico/genética
18.
Plant Cell ; 33(4): 882-900, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33681994

RESUMEN

Vitamin A deficiency remains prevalent in parts of Asia, Latin America, and sub-Saharan Africa where maize (Zea mays) is a food staple. Extensive natural variation exists for carotenoids in maize grain. Here, to understand its genetic basis, we conducted a joint linkage and genome-wide association study of the US maize nested association mapping panel. Eleven of the 44 detected quantitative trait loci (QTL) were resolved to individual genes. Six of these were correlated expression and effect QTL (ceeQTL), showing strong correlations between RNA-seq expression abundances and QTL allelic effect estimates across six stages of grain development. These six ceeQTL also had the largest percentage of phenotypic variance explained, and in major part comprised the three to five loci capturing the bulk of genetic variation for each trait. Most of these ceeQTL had strongly correlated QTL allelic effect estimates across multiple traits. These findings provide an in-depth genome-level understanding of the genetic and molecular control of carotenoids in plants. In addition, these findings provide a roadmap to accelerate breeding for provitamin A and other priority carotenoid traits in maize grain that should be readily extendable to other cereals.


Asunto(s)
Carotenoides/metabolismo , Semillas/genética , Zea mays/genética , Zea mays/metabolismo , Epistasis Genética , Variación Genética , Estudio de Asociación del Genoma Completo , Fenotipo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Semillas/metabolismo
19.
G3 (Bethesda) ; 11(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33677522

RESUMEN

Despite its importance to plant function and human health, the genetics underpinning element levels in maize grain remain largely unknown. Through a genome-wide association study in the maize Ames panel of nearly 2,000 inbred lines that was imputed with ∼7.7 million SNP markers, we investigated the genetic basis of natural variation for the concentration of 11 elements in grain. Novel associations were detected for the metal transporter genes rte2 (rotten ear2) and irt1 (iron-regulated transporter1) with boron and nickel, respectively. We also further resolved loci that were previously found to be associated with one or more of five elements (copper, iron, manganese, molybdenum, and/or zinc), with two metal chelator and five metal transporter candidate causal genes identified. The nas5 (nicotianamine synthase5) gene involved in the synthesis of nicotianamine, a metal chelator, was found associated with both zinc and iron and suggests a common genetic basis controlling the accumulation of these two metals in the grain. Furthermore, moderate predictive abilities were obtained for the 11 elemental grain phenotypes with two whole-genome prediction models: Bayesian Ridge Regression (0.33-0.51) and BayesB (0.33-0.53). Of the two models, BayesB, with its greater emphasis on large-effect loci, showed ∼4-10% higher predictive abilities for nickel, molybdenum, and copper. Altogether, our findings contribute to an improved genotype-phenotype map for grain element accumulation in maize.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Teorema de Bayes , Quelantes , Grano Comestible/genética , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Zea mays/genética
20.
G3 (Bethesda) ; 11(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33677570

RESUMEN

Mitragyna speciosa (kratom) produces numerous compounds with pharmaceutical properties including the production of bioactive monoterpene indole and oxindole alkaloids. Using a linked-read approach, a 1,122,519,462 bp draft assembly of M. speciosa "Rifat" was generated with an N50 scaffold size of 1,020,971 bp and an N50 contig size of 70,448 bp that encodes 55,746 genes. Chromosome counting revealed that "Rifat" is a tetraploid with a base chromosome number of 11, which was further corroborated by orthology and syntenic analysis of the genome. Analysis of genes and clusters involved in specialized metabolism revealed genes putatively involved in alkaloid biosynthesis. Access to the genome of M. speciosa will facilitate an improved understanding of alkaloid biosynthesis and accelerate the production of bioactive alkaloids in heterologous hosts.


Asunto(s)
Mitragyna , Alcaloides de Triptamina Secologanina , Minería de Datos , Humanos , Mitragyna/genética , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA