Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 225: 116265, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714277

RESUMEN

Relaxin-family peptide 3 receptor (RXFP3) is activated by relaxin-3 in the brain to influence arousal and related functions, such as feeding and stress responses. Two transgenic mouse lines have recently been developed that co-express different fluorophores within RXFP3-expressing neurons: either yellow fluorescent protein (YFP; RXFP3-Cre/YFP mice) or tdTomato (RXFP3-Cre/tdTomato mice). To date, the characteristics of neurons that express RXFP3-associated fluorophores in these mice have only been investigated in the bed nucleus of the stria terminalis and the hypothalamic arcuate nucleus. To better determine the utility of these fluorophore-expressing mice for further research, we characterised the neuroanatomical distribution of fluorophores throughout the brain of these mice and compared this to the published distribution of Rxfp3 mRNA (detected by in situ hybridisation) in wildtype mice. Coronal sections of RXFP3-Cre/YFP (n = 8) and RXFP3-Cre/tdTomato (n = 8) mouse brains were imaged, and the density of fluorophore-expressing cells within various brain regions/nuclei was qualitatively assessed. Comparisons with our previously reported RXFP3 mRNA distribution revealed that of 212 brain regions that contained either fluorophore or RXFP3 mRNA, approximately half recorded densities that were within two qualitative measurements of each other (on a 9-point scale), including hippocampal dentate gyrus and amygdala subregions. However, many brain areas with likely non-authentic, false-positive, or false-negative fluorophore expression were also detected, including the cerebellum. Therefore, this study provides a guide to which brain regions should be prioritized for future study of RXFP3 in these mice, to better understand the neuroanatomy and function of this intriguing, neuronal peptide receptor.


Asunto(s)
Encéfalo , Proteínas Luminiscentes , Ratones Transgénicos , Receptores Acoplados a Proteínas G , Animales , Ratones , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Masculino , Colorantes Fluorescentes , Neuronas/metabolismo , Integrasas/genética , Integrasas/metabolismo , Ratones Endogámicos C57BL , Proteína Fluorescente Roja , Proteínas Bacterianas
2.
Front Neurosci ; 14: 594818, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584175

RESUMEN

RXFP3 (relaxin-family peptide 3 receptor) is the cognate G-protein-coupled receptor for the neuropeptide, relaxin-3. RXFP3 is expressed widely throughout the brain, including the hypothalamus, where it has been shown to modulate feeding behavior and neuroendocrine activity in rodents. In order to better characterize its potential mechanisms of action, this study determined whether RXFP3 is expressed by dopaminergic neurons within the arcuate nucleus (ARC) and dorsomedial hypothalamus (DMH), in addition to the ventral tegmental area (VTA). Neurons that express RXFP3 were visualized in coronal brain sections from RXFP3-Cre/tdTomato mice, which express the tdTomato fluorophore within RXFP3-positive cells, and dopaminergic neurons in these areas were visualized by simultaneous immunohistochemical detection of tyrosine hydroxylase-immunoreactivity (TH-IR). Approximately 20% of ARC neurons containing TH-IR coexpressed tdTomato fluorescence, suggesting that RXFP3 can influence the dopamine pathway from the ARC to the pituitary gland that controls prolactin release. The ability of prolactin to reduce leptin sensitivity and increase food consumption therefore represents a potential mechanism by which RXFP3 activation influences feeding. A similar proportion of DMH neurons containing TH-IR expressed RXFP3-related tdTomato fluorescence, consistent with a possible RXFP3-mediated regulation of stress and neuroendocrine circuits. In contrast, RXFP3 was barely detected within the VTA. TdTomato signal was absent from the ARC and DMH in sections from Rosa26-tdTomato mice, suggesting that the cells identified in RXFP3-Cre/tdTomato mice expressed authentic RXFP3-related tdTomato fluorescence. Together, these findings identify potential hypothalamic mechanisms through which RXFP3 influences neuroendocrine control of metabolism, and further highlight the therapeutic potential of targeting RXFP3 in feeding-related disorders.

3.
Med Sci Sports Exerc ; 48(11): 2108-2117, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27327024

RESUMEN

PURPOSE: This study aimed to examine the effects of reduced CHO but high postexercise fat availability on cell signaling and expression of genes with putative roles in regulation of mitochondrial biogenesis, lipid metabolism, and muscle protein synthesis. METHODS: Ten males completed a twice per day exercise model (3.5 h between sessions) comprising morning high-intensity interval training (8 × 5 min at 85% V˙O2peak) and afternoon steady-state (SS) running (60 min at 70% V˙O2peak). In a repeated-measures design, runners exercised under different isoenergetic dietary conditions consisting of high-CHO (HCHO: 10 g·kg CHO, 2.5 g·kg protein, and 0.8 g·kg fat for the entire trial period) or reduced-CHO but high-fat availability in the postexercise recovery periods (HFAT: 2.5 g·kg CHO, 2.5 g·kg protein, and 3.5 g·kg fat for the entire trial period). RESULTS: Muscle glycogen was lower (P < 0.05) at 3 h (251 vs 301 mmol·kg dry weight) and 15 h (182 vs 312 mmol·kg dry weight) post-SS exercise in HFAT compared with HCHO. Adenosine monophosphate-activated protein kinase α2 activity was not increased post-SS in either condition (P = 0.41), although comparable increases (all P < 0.05) in PGC-1α, p53, citrate synthase, Tfam, peroxisome proliferator-activated receptor, and estrogen-related receptor α mRNA were observed in HCHO and HFAT. By contrast, PDK4 (P = 0.003), CD36 (P = 0.05), and carnitine palmitoyltransferase 1 (P = 0.03) mRNA were greater in HFAT in the recovery period from SS exercise compared with HCHO. Ribosomal protein S6 kinase activity was higher (P = 0.08) at 3 h post-SS exercise in HCHO versus HFAT (72.7 ± 51.9 vs 44.7 ± 27 fmol·min·mg). CONCLUSION: Postexercise high-fat feeding does not augment the mRNA expression of genes associated with regulatory roles in mitochondrial biogenesis, although it does increase lipid gene expression. However, postexercise ribosomal protein S6 kinase 1 activity is reduced under conditions of high-fat feeding, thus potentially impairing skeletal muscle remodeling processes.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Ejercicio Físico/fisiología , Metabolismo de los Lípidos , Proteínas Musculares/biosíntesis , Músculo Esquelético/enzimología , Biogénesis de Organelos , Proteínas Quinasas S6 Ribosómicas/metabolismo , Estudios Cruzados , Carbohidratos de la Dieta/administración & dosificación , Carbohidratos de la Dieta/metabolismo , Grasas de la Dieta/metabolismo , Expresión Génica , Glucógeno/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Masculino , Proteínas Musculares/genética , Proteínas Quinasas S6 Ribosómicas/genética , Transducción de Señal/fisiología , Adulto Joven
4.
J Am Coll Health ; 59(7): 612-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21823956

RESUMEN

OBJECTIVE: Data about college student sleep were collected and used to develop an education campaign to improve sleep. PARTICIPANTS: On-campus residents at a large state university were surveyed on 4 occasions, October 2005 to April 2007. Sample size was 675 to 1,823 students. Fall 2005 mean age = 18.5 years, SD = 1.03 (range 18-30) years. Initial survey included 935 males and 1,859 females (2005-2006). Matched pairs data (2006-2007) included 91 males and 107 females. Twenty-six males and 22 females participated in interviews. METHODS: A survey administered online included the Pittsburgh Sleep Quality Index, along with an 8-question in-person interview. RESULTS: Poor sleep interacted with academics and mental health, and an education campaign positively affected student sleep. CONCLUSIONS: Teaching students how to effectively manage sleep can improve their well-being. Sleep may also be a gateway topic for health care professionals to address sensitive health issues such as depression.


Asunto(s)
Conductas Relacionadas con la Salud , Sueño/fisiología , Estudiantes/psicología , Universidades , Adaptación Psicológica , Adolescente , Adulto , Evaluación Educacional , Femenino , Promoción de la Salud , Indicadores de Salud , Encuestas Epidemiológicas , Humanos , Masculino , Salud Mental , Factores Sexuales , Estrés Psicológico , Estudiantes/estadística & datos numéricos , Encuestas y Cuestionarios , Adulto Joven
5.
Science ; 330(6003): 448; author reply 448-9, 2010 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-20966234
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...