Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 147: 107353, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615475

RESUMEN

Dialkyl/aryl aminophosphonates, 3a-g and 4a-e were synthesized using the LiClO4 catalyzed Kabachnic Fields-type reaction straightforwardly and efficiently. The synthesized phosphonates structures were characterized using elemental analyses, FT-IR, 1H NMR, 13C NMR, and MS spectroscopy. The new compounds were subjected to in-silico molecular docking simulations to evaluate their potential inhibition against Influenza A Neuraminidase and RNA-dependent RNA polymerase of human coronavirus 229E. Subsequently, the compounds were further tested in vitro using a cytopathic inhibition assay to assess their antiviral activity against both human Influenza (H1N1) and human coronavirus (HCoV-229E). Diphenyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (furan-2-yl) methyl) phosphonate (3f) and diethyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) methyl) phosphonate (4e) were demonstrated direct inhibition activity against Influenza A Neuraminidase and RNA-dependent RNA polymerase. This was supported by their highly favorable binding energies in-silico, with top-ranked values of -12.5 kcal/mol and -14.2 kcal/mol for compound (3f), and -13.5 kcal/mol and -9.89 kcal/mol for compound (4e). Moreover, they also displayed notable antiviral efficacy in vitro against both viruses. These compounds demonstrated significant antiviral activity, as evidenced by selectivity indices (SI) of 101.7 and 51.8, respectively against H1N1, and 24.5 and 5.1 against HCoV-229E, respectively.


Asunto(s)
Antivirales , Coronavirus Humano 229E , Diseño de Fármacos , Subtipo H1N1 del Virus de la Influenza A , Simulación del Acoplamiento Molecular , Organofosfonatos , Pirimidinonas , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Humanos , Pirimidinonas/farmacología , Pirimidinonas/síntesis química , Pirimidinonas/química , Relación Estructura-Actividad , Organofosfonatos/farmacología , Organofosfonatos/química , Organofosfonatos/síntesis química , Coronavirus Humano 229E/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo
2.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36234601

RESUMEN

In this paper, by means of high-resolution photoemission, soft X-ray absorption and atomic force microscopy, we investigate, for the first time, the mechanisms of damaging, induced by neutron source, and recovering (after annealing) of p-i-n detector devices based on hydrogenated amorphous silicon (a-Si:H). This investigation will be performed by mean of high-resolution photoemission, soft X-Ray absorption and atomic force microscopy. Due to dangling bonds, the amorphous silicon is a highly defective material. However, by hydrogenation it is possible to reduce the density of the defect by several orders of magnitude, using hydrogenation and this will allow its usage in radiation detector devices. The investigation of the damage induced by exposure to high energy irradiation and its microscopic origin is fundamental since the amount of defects determine the electronic properties of the a-Si:H. The comparison of the spectroscopic results on bare and irradiated samples shows an increased degree of disorder and a strong reduction of the Si-H bonds after irradiation. After annealing we observe a partial recovering of the Si-H bonds, reducing the disorder in the Si (possibly due to the lowering of the radiation-induced dangling bonds). Moreover, effects in the uppermost coating are also observed by spectroscopies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...