Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Magn Reson ; 271: 15-20, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27522542

RESUMEN

The availability of compact, low-cost magnetic resonance imaging instruments would further broaden the substantial impact of this technology. We report highly sensitive detection of magnetic resonance using low-stress silicon nitride (SiNx) membranes. We use these membranes as low-loss, high-frequency mechanical oscillators and find they are able to mechanically detect spin-dependent forces with high sensitivity enabling ultrasensitive magnetic resonance detection. The high force detection sensitivity stems from their high mechanical quality factor Q∼10(6)[1,2] combined with the low mass of the resonator. We use this excellent mechanical force sensitivity to detect the electron spin magnetic resonance using a SiNx membrane as a force detector. The demonstrated force sensitivity at 300K is 4fN/Hz, indicating a potential low temperature (4K) sensitivity of 25aN/Hz. Given their sensitivity, robust construction, large surface area and low cost, SiNx membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument having spatial resolution superior to conventional approaches.

2.
Phys Rev Lett ; 115(24): 246602, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26705647

RESUMEN

We present the measurement of ferromagnetic resonance (FMR-)driven spin pumping and three-terminal electrical spin injection within the same silicon-based device. Both effects manifest in a dc spin accumulation voltage V_{s} that is suppressed as an applied field is rotated to the out-of-plane direction, i.e., the oblique Hanle geometry. Comparison of V_{s} between these two spin injection mechanisms reveals an anomalously strong suppression of FMR-driven spin pumping with increasing out-of-plane field H_{app}^{z}. We propose that the presence of the large ac component to the spin current generated by the spin pumping approach, expected to exceed the dc value by 2 orders of magnitude, is the origin of this discrepancy through its influence on the spin dynamics at the oxide-silicon interface. This convolution, wherein the dynamics of both the injector and the interface play a significant role in the spin accumulation, represents a new regime for spin injection that is not well described by existing models of either FMR-driven spin pumping or electrical spin injection.

3.
Phys Rev Lett ; 112(19): 197201, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24877962

RESUMEN

We have investigated spin pumping from Y3Fe5O12 thin films into Cu, Ag, Ta, W, Pt, and Au with varying spin-orbit coupling strengths. From measurements of Gilbert damping enhancement and inverse spin Hall signals spanning 3 orders of magnitude, we determine the spin Hall angles and interfacial spin mixing conductances for the six metals. The spin Hall angles largely vary as Z(4) (Z: atomic number), corroborating the role of spin-orbit coupling. Amongst the four 5d metals, the variation of the spin Hall angle is dominated by the sensitivity of the d-orbital moment to the d-electron count, confirming theoretical predictions.

4.
Phys Rev Lett ; 111(11): 117201, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-24074116

RESUMEN

We present a new tool for imaging spin properties. We show that a spatially averaged spin signal, measured as a function of a scanned magnetic probe's position, contains information about the local spin properties. In this first demonstration we map the injected spin density in GaAs by measuring spin photoluminescence with a resolution of 1.2 µm. The ultimate limit of the technique is set by the gradient of the probe's field, allowing for a resolution beyond the optical diffraction limit. Such probes can also be integrated with other detection methods. This generality allows the technique to be extended to buried interfaces and optically inactive materials.

5.
Phys Rev Lett ; 111(24): 247202, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24483695

RESUMEN

It is widely believed that the mechanism for spin pumping in ferromagnet-nonmagnet bilayers is the exchange interaction between the ferromagnet and nonmagnetic material. We observe 1000-fold exponential decay of spin pumping from thin Y3Fe5O12 films to Pt across insulating barriers, from which exponential decay lengths of 0.16, 0.19, and 0.23 nm are extracted for oxide barriers having band gaps of 4.91, 3.40, and 2.36 eV, respectively. This archetypal signature of quantum tunneling through a barrier underscores the importance of exchange coupling for spin pumping and reveals its dependence on the characteristics of the barrier material.

6.
Ultramicroscopy ; 111(8): 1360-5, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21864777

RESUMEN

An iron filled carbon nanotube (FeCNT), a 10-40 nm ferromagnetic nanowire enclosed in a protective carbon tube, is an attractive candidate for a magnetic force microscopy (MFM) probe as it provides a mechanically and chemically robust, nanoscale probe. We demonstrate the probe's capabilities with images of the magnetic field gradients close to the surface of a Py dot in both the multi-domain and vortex states. We show the FeCNT probe is accurately described by a single magnetic monopole located at its tip. Its effective magnetic charge is determined by the diameter of the iron wire and its saturation magnetization 4πM(s) ≈ 2.2 × 10(4)G. A magnetic monopole probe is advantageous as it enables quantitative measurements of the magnetic field gradient close to the sample surface. The lateral resolution is defined by the diameter of the iron wire and the probe-sample separation.

7.
Rev Sci Instrum ; 80(8): 083704, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19725659

RESUMEN

We have developed the variable temperature scanning force microscope capable of performing both magnetic resonance force microscopy (MRFM) and magnetic force microscopy (MFM) measurements in the temperature range between 5 and 300 K. Modular design, large scanning area, and interferometric detection of the cantilever deflection make it a sensitive, easy to operate, and reliable instrument suitable for studies of the dynamic and static magnetization in various systems. We have verified the performance of the microscope by imaging vortices in a Nb thin film in the MFM mode of operation. MRFM spectra in a diphenyl-picryl-hydrazyl film were recorded to evaluate the MRFM mode of operation.

9.
J Nanosci Nanotechnol ; 8(6): 2811-26, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18681017

RESUMEN

X-band ferromagnetic resonance (FMR) was used to characterize in-plane magnetic anisotropies in rectangular and square arrays of circular nickel and Permalloy microdots. In the case of a rectangular lattice, as interdot distances in one direction decrease, the in-plane uniaxial anisotropy field increases, in good agreement with a simple theory of magnetostatically interacting uniformly magnetized dots. In the case of a square lattice a four-fold anisotropy of the in-plane FMR field H(r) was found when the interdot distance a gets comparable to the dot diameter D. This anisotropy, not expected in the case of uniformly magnetized dots, was explained by a non-uniform magnetization m(r) in a dot in response to dipolar forces in the patterned magnetic structure. It is well described by an iterative solution of a continuous variation procedure. In the case of perpendicular magnetization multiple sharp resonance peaks were observed below the main FMR peak in all the samples, and the relative positions of these peaks were independent of the interdot separations. Quantitative description of the observed multiresonance FMR spectra was given using the dipole-exchange spin wave dispersion equation for a perpendicularly magnetized film where in-plane wave vector is quantized due to the finite dot radius, and the inhomogenetiy of the intradot static demagnetization field in the nonellipsoidal dot is taken into account. It was demonstrated that ferromagnetic resonance force microscopy (FMRFM) can be used to determine both local and global properties of patterned submicron ferromagnetic samples. Local spectroscopy together with the possibility to vary the tip-sample spacing enables the separation of those two contributions to a FMRFM spectrum. The global FMR properties of circular submicron dots determined using magnetic resonance force microscopy are in a good agreement with results obtained using conventional FMR and with theoretical descriptions.

10.
Phys Rev Lett ; 100(19): 197601, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18518486

RESUMEN

We report nanoscale scanned probe ferromagnetic resonance force microscopy (FMRFM) imaging of individual ferromagnetic microstructures. This reveals the mechanism for high spatial resolution in FMRFM imaging: the strongly inhomogeneous local magnetic field of the cantilever mounted micromagnetic probe magnet used in FMRFM enables selective, local excitation of ferromagnetic resonance (FMR). This approach, demonstrated here in individual permalloy disks, is straightforwardly extended to excitation of localized FMR modes, and hence imaging in extended films.

11.
J Magn Reson ; 154(2): 210-27, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11846579

RESUMEN

The magnetic resonance force microscope (MRFM) provides a route to achieving scanned probe magnetic resonance imaging with extremely high spatial resolution. Achieving this capability will require understanding the force exerted on a microscopic magnetic probe by a spatially extended sample over which the probe is scanned. Here we present a detailed analysis of this interaction between probe and sample. We focus on understanding the situation where the micromagnet mounted on the mechanical resonator generates a very inhomogeneous magnetic field and is scanned over a sample with at least one spatial dimension much larger than that of the micromagnet. This situation differs quite significantly from the conditions under which most MRFM experiments have been carried out where the sample is mounted on the mechanical resonator and placed in a rather weak magnetic field gradient. In addition to the concept of a sensitive slice (the spatial region where the magnetic resonance condition is met) it is valuable to map the forces exerted on the probe by spins at various locations; this leads to the concept of the force slice (the region in which spins exert force on the resonator). Results of this analysis, obtained both analytically and numerically, will be qualitatively compared with an initial experimental finding from an EPR-MRFM experiment carried out on DPPH at 4 K.

12.
Phys Rev Lett ; 86(13): 2894-6, 2001 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-11290066

RESUMEN

We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations.

13.
Phys Rev Lett ; 85(3): 642-5, 2000 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-10991360

RESUMEN

We report Cu and La nuclear magnetic resonance measurements in the title compound that reveal an inhomogeneous glassy behavior of the spin dynamics. A low temperature peak in the La spin lattice relaxation rate and the "wipeout" of Cu intensity both arise from these slow electronic spin fluctuations that reveal a distribution of activation energies. Inhomogeneous slowing of spin fluctuations appears to be a general feature of doped lanthanum cuprate.

14.
Solid State Nucl Magn Reson ; 11(1-2): 65-72, 1998 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9650791

RESUMEN

The Magnetic Resonance Force Microscope (MRFM) presents the opportunity for a magnetic resonance imaging probe with ultra-high, potentially atomic-scale, resolution. The successful application of this technique in detection of nuclear magnetic, electron-spin and ferromagnetic resonance (FMR) highlights its significant potential. We discuss the capabilities of the MRFM with particular emphasis on the detection of FMR using MRFM techniques. A crucial remaining challenge in the development of the magnetic resonance force microscope (MRFM) is to place the magnetic probe on the mechanical resonator. We address the problem of spurious detector response arising from interactions between the magnetic tip and various external applied fields. We show that miniature, magnetically-polarized Nd2Fe14B particles show promise as magnetic probe tips. Our experience indicates it will be important to minimize the total polarized moment of the magnetic tip and to ensure that the applied fields are as uniform as possible.


Asunto(s)
Espectroscopía de Resonancia Magnética/instrumentación , Microscopía/instrumentación , Compuestos Férricos , Espectroscopía de Resonancia Magnética/métodos , Magnetismo , Microscopía/métodos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...