Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 10: 903, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31114574

RESUMEN

Lymphocyte homing into the intestine is mediated by binding of leukocytes to mucosal addressin cell adhesion molecule 1 (MAdCAM-1), expressed on endothelial cells. Currently, the immune system of the gut is considered a major modulator not only of inflammatory bowel disease, but also of extra-intestinal autoimmune disorders, including multiple sclerosis (MS). Despite intense research in this field, the exact role of the intestine in the pathogenesis of (neuro-)inflammatory disease conditions remains to be clarified. This prompted us to investigate the role of MAdCAM-1 in immunological processes in the intestine during T cell-mediated autoimmunity of the central nervous system (CNS). Using the experimental autoimmune encephalomyelitis model of MS, we show that MAdCAM-1-deficient (MAdCAM-1-KO) mice are less susceptible to actively MOG35-55-induced disease. Protection from disease was accompanied by decreased numbers of immune cells in the lamina propria and Peyer's patches as well as reduced immune cell infiltration into the spinal cord. MOG35-55-recall responses were intact in other secondary lymphoid organs of MAdCAM-1-KO mice. The composition of specific bacterial groups within the microbiome did not differ between MAdCAM-1-KO mice and controls, while MAdCAM-1-deficiency severely impaired migration of MOG35-55-activated lymphocytes to the gut. Our data indicate a critical role of MAdCAM-1 in the development of CNS inflammation by regulating lymphocyte homing to the intestine, and may suggest a role for the intestinal tract in educating lymphocytes to become encephalitogenic.


Asunto(s)
Moléculas de Adhesión Celular/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Mucoproteínas/inmunología , Linfocitos T/inmunología , Animales , Movimiento Celular/inmunología , Sistema Nervioso Central/inmunología , Células Endoteliales/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/inmunología , Esclerosis Múltiple , Ganglios Linfáticos Agregados/inmunología , Receptores Mensajeros de Linfocitos/inmunología
2.
Ann Clin Transl Neurol ; 5(6): 668-676, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29928650

RESUMEN

OBJECTIVE: Immunological studies have demonstrated a plethora of beneficial effects of dimethyl fumarate (DMF) on various cell types. However, the cellular and molecular targets are incompletely understood and response markers are scarce. Here, we focus on the relation between nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathway induction under DMF therapy and the composition of the blood immune cell compartment and clinical efficacy in relapsing-remitting multiple sclerosis (MS) patients. METHODS: We explored effects of DMF on peripheral immune cell subsets by flow cytometric and transcriptional analysis of serial blood samples obtained from 43 MS patients during the first year of therapy. RESULTS: Gene expression analysis proved activation of NRF2 signaling under DMF therapy that was paralleled by a temporal expansion of FoxP3+ regulatory T cells, CD56bright natural killer cells, plasmacytoid dendritic cells, and a decrease in CD8+ T cells, B cells, and type 1 myeloid dendritic cells. In a subgroup of 28 patients with completely available clinical data, individuals with higher levels of the NRF2 target gene NAD(P)H quinone dehydrogenase 1 (NQO1) 4-6 weeks after DMF therapy initiation were more likely to achieve no evidence of disease activity status 1 year later. The degree of NQO1 induction further correlated with patient age. INTERPRETATION: We demonstrate that positive effects of DMF on the clinical outcome are paralleled by induction of the antioxidant NRF2 transcriptional pathway and a shift toward regulatory immune cell subsets in the periphery. Our data identify a role of the NRF2 pathway as potential biomarker for DMF treatment in MS.

3.
J Neuroinflammation ; 14(1): 184, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28899400

RESUMEN

BACKGROUND: There has been a marked increase in the incidence of autoimmune diseases like multiple sclerosis (MS) in the last decades which is most likely driven by a change in environmental factors. Here, growing evidence suggests that ingredients of a Western diet like high intake of sodium chloride (NaCl) or saturated fatty acids may impact systemic immune responses, thus increasing disease susceptibility. Recently, we have shown that high dietary salt or long-chain fatty acid (LCFA) intake indeed aggravates T helper (Th) cell responses and neuroinflammation. METHODS: Naïve CD4+ T cells were treated with an excess of 40 mM NaCl and/or 250 µM lauric acid (LA) in vitro to analyze effects on Th cell differentiation, cytokine secretion, and gene expression. We employed ex vivo analyses of the model disease murine experimental autoimmune encephalomyelitis (EAE) to investigate whether salt and LCFA may affect disease severity and T cell activation in vivo. RESULTS: LCFA, like LA, together with NaCl enhance the differentiation of Th1 and Th17 cells as well as pro-inflammatory cytokine and gene expression in vitro. In cell culture, we observed an additive effect of LA and hypertonic extracellular NaCl (NaCl + LA) in Th17 differentiation assays as well as on IL-17, GM-CSF, and IL-2 gene expression. In contrast, NaCl + LA reduced Th2 frequencies. We employed EAE as a model of Th1/Th17 cell-mediated autoimmunity and show that the combination of a NaCl- and LA-rich diet aggravated the disease course and increased T cell infiltration into the central nervous system (CNS) to the same extent as dietary NaCl. CONCLUSIONS: Our findings demonstrate a partially additive effect of NaCl and LA on Th cell polarization in vitro and on Th cell responses in autoimmune neuroinflammation. These data may help to better understand the pathophysiology of autoimmune diseases such as MS.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/inmunología , Ácidos Grasos/farmacología , Cloruro de Sodio/farmacología , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Animales , Diferenciación Celular/inmunología , Encefalomielitis Autoinmune Experimental/patología , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Linfocitos T Colaboradores-Inductores/citología
4.
Pflugers Arch ; 469(3-4): 431-444, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28190090

RESUMEN

Macrophages are essential players of the innate immune system which are involved in the initiation and progression of various inflammatory and autoimmune diseases including neuroinflammation. In the past few years, it has become increasingly clear that the regulation of macrophage responses by the local tissue milieu is also influenced by mediators which were first discovered as regulators in the nervous or also cardiovascular system. Here, the renin-angiotensin system (RAS) is a major focus of current research. Besides its classical role in blood pressure control, body fluid, and electrolyte homeostasis, the RAS may influence (auto)immune responses, modulate T cells, and particularly act on macrophages via different signaling pathways. Activation of classical RAS pathways including angiotensin (Ang) II and AngII type 1 (AT1R) receptors may drive pro-inflammatory macrophage responses in neuroinflammation via regulation of chemokines. More recently, alternative RAS pathways were described, such as binding of Ang-(1-7) to its receptor Mas. Signaling via Mas pathways may counteract some of the AngII/AT1R-mediated effects. In macrophages, the Ang-(1-7)/Mas exerts beneficial effects on neuroinflammation via modulating macrophage polarization, migration, and T cell activation in vitro and in vivo. These data delineate a pivotal role of the RAS in inflammation of the nervous system and identify RAS modulation as a potential new target for immunotherapy with a special focus on macrophages.


Asunto(s)
Inflamación/patología , Macrófagos/fisiología , Sistema Nervioso/patología , Sistema Renina-Angiotensina/fisiología , Animales , Humanos , Transducción de Señal/fisiología
5.
Front Immunol ; 8: 1922, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312359

RESUMEN

To date, the intracellular signaling pathways involved in dendritic cell (DC) function are poorly understood. The antioxidative transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has been shown to affect maturation, function, and subsequent DC-mediated T cell responses of murine and human DCs. In experimental autoimmune encephalomyelitis (EAE), as prototype animal model for a T helper cell-mediated autoimmune disease, antigen presentation, cytokine production, and costimulation by DCs play a major role. We explore the role of Nrf2 in DC function, and DC-mediated T cell responses during T cell-mediated autoimmunity of the central nervous system using genetic ablation and pharmacological activation in mice and men to corroborate our data in a translational setting. In murine and human DCs, monomethyl fumarate induced Nrf2 signaling inhibits DC maturation and DC-mediated T cell proliferation by reducing inflammatory cytokine production and expression of costimulatory molecules. In contrast, Nrf2-deficient DCs generate more activated T helper cells (Th1/Th17) but fewer regulatory T cells and foster T cell proliferation. Transfer of DCs with Nrf2 activation during active EAE reduces disease severity and T cell infiltration. Our data demonstrate that Nrf2 signaling modulates autoimmunity in murine and human systems via inhibiting DC maturation and function thus shedding further light on the mechanism of action of antioxidative stress pathways in antigen-presenting cells.

6.
Proc Natl Acad Sci U S A ; 113(49): 14109-14114, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27872279

RESUMEN

Recently, an alternative renin-angiotensin system pathway has been described, which involves binding of angiotensin-(1-7) to its receptor Mas. The Mas axis may counterbalance angiotensin-II-mediated proinflammatory effects, likely by affecting macrophage function. Here we investigate the role of Mas in murine models of autoimmune neuroinflammation and atherosclerosis, which both involve macrophage-driven pathomechanisms. Mas signaling affected macrophage polarization, migration, and macrophage-mediated T-cell activation. Mas deficiency exacerbated the course of experimental autoimmune encephalomyelitis and increased macrophage infiltration as well as proinflammatory gene expression in the spleen and spinal cord. Furthermore, Mas deficiency promoted atherosclerosis by affecting macrophage infiltration and migration and led to increased oxidative stress as well as impaired endothelial function in ApoE-deficient mice. In summary, we identified the Mas axis as an important factor in macrophage function during inflammation of the central nervous and vascular system in vivo. Modulating the Mas axis may constitute an interesting therapeutic target in multiple sclerosis and/or atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Macrófagos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Aterosclerosis/inmunología , Aterosclerosis/fisiopatología , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Encefalomielitis Autoinmune Experimental/inmunología , Endotelio Vascular/fisiopatología , Femenino , Expresión Génica , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo , Proto-Oncogenes Mas , Médula Espinal/metabolismo , Bazo/metabolismo , Linfocitos T/fisiología
7.
Semin Nephrol ; 36(3): 220-36, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27339387

RESUMEN

Kidney cell death plays a key role in the progression of life-threatening renal diseases, such as acute kidney injury and chronic kidney disease. Injured and dying epithelial and endothelial cells take part in complex communication with the innate immune system, which drives the progression of cell death and the decrease in renal function. To improve our understanding of kidney cell death dynamics and its impact on renal disease, a study approach is needed that facilitates the visualization of renal function and morphology in real time. Intravital multiphoton microscopy of the kidney has been used for more than a decade and made substantial contributions to our understanding of kidney physiology and pathophysiology. It is a unique tool that relates renal structure and function in a time- and spatial-dependent manner. Basic renal function, such as microvascular blood flow regulation and glomerular filtration, can be determined in real time and homeostatic alterations, which are linked inevitably to cell death and can be depicted down to the subcellular level. This review provides an overview of the available techniques to study kidney dysfunction and inflammation in terms of cell death in vivo, and addresses how this novel approach can be used to improve our understanding of cell death dynamics in renal disease.


Asunto(s)
Lesión Renal Aguda/patología , Muerte Celular , Riñón/patología , Insuficiencia Renal Crónica/patología , Adhesión Celular , Células Endoteliales/patología , Humanos , Microscopía Intravital , Túbulos Renales Proximales/patología , Rodamiento de Leucocito , Leucocitos/patología , Microscopía de Fluorescencia por Excitación Multifotónica
9.
J Am Soc Nephrol ; 27(3): 731-44, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26116357

RESUMEN

Albuminuria is a hallmark of kidney disease of various etiologies and usually caused by deterioration of glomerular filtration barrier integrity. We recently showed that angiotensin II (Ang II) acutely increases albumin filtration in the healthy kidney. Here, we used intravital microscopy to assess the effects of Ang II on podocyte function in rats. Acute infusion of 30, 60, or 80 ng/kg per minute Ang II enhanced the endocytosis of albumin by activation of the type 1 Ang II receptor and resulted in an average (±SEM) of 3.7±2.2, 72.3±18.6 (P<0.001), and 239.4±34.6 µm(3) (P<0.001) albumin-containing vesicles per glomerulus, respectively, compared with none at baseline or 10 ng/kg per minute Ang II. Immunostaining of Ang II-infused kidneys confirmed the presence of albumin-containing vesicles, which colocalized with megalin, in podocin-positive cells. Furthermore, podocyte endocytosis of albumin was markedly reduced in the presence of gentamicin, a competitive inhibitor of megalin-dependent endocytosis. Ang II infusion increased the concentration of albumin in the subpodocyte space, a potential source for endocytic protein uptake, and gentamicin further increased this concentration. Some endocytic vesicles were acidified and colocalized with LysoTracker. Most vesicles migrated from the capillary to the apical aspect of the podocyte and were eventually released into the urinary space. This transcytosis accounted for approximately 10% of total albumin filtration. In summary, the transcellular transport of proteins across the podocyte constitutes a new pathway of glomerular protein filtration. Ang II enhances the endocytosis and transcytosis of plasma albumin by podocytes, which may eventually impair podocyte function.


Asunto(s)
Albúminas/metabolismo , Angiotensina II/farmacología , Glomérulos Renales/fisiología , Podocitos/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Transcitosis/efectos de los fármacos , Vasoconstrictores/farmacología , Aminas , Animales , Femenino , Gentamicinas/farmacología , Microscopía Intravital , Glomérulos Renales/efectos de los fármacos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Microscopía Electrónica , Microscopía de Fluorescencia por Excitación Multifotónica , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Vesículas Transportadoras , Orina
10.
Immunity ; 43(4): 817-29, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26488817

RESUMEN

Growing empirical evidence suggests that nutrition and bacterial metabolites might impact the systemic immune response in the context of disease and autoimmunity. We report that long-chain fatty acids (LCFAs) enhanced differentiation and proliferation of T helper 1 (Th1) and/or Th17 cells and impaired their intestinal sequestration via p38-MAPK pathway. Alternatively, dietary short-chain FAs (SCFAs) expanded gut T regulatory (Treg) cells by suppression of the JNK1 and p38 pathway. We used experimental autoimmune encephalomyelitis (EAE) as a model of T cell-mediated autoimmunity to show that LCFAs consistently decreased SCFAs in the gut and exacerbated disease by expanding pathogenic Th1 and/or Th17 cell populations in the small intestine. Treatment with SCFAs ameliorated EAE and reduced axonal damage via long-lasting imprinting on lamina-propria-derived Treg cells. These data demonstrate a direct dietary impact on intestinal-specific, and subsequently central nervous system-specific, Th cell responses in autoimmunity, and thus might have therapeutic implications for autoimmune diseases such as multiple sclerosis.


Asunto(s)
Autoinmunidad/efectos de los fármacos , Sistema Nervioso Central/inmunología , Grasas de la Dieta/farmacología , Duodeno/inmunología , Encefalomielitis Autoinmune Experimental/etiología , Ácidos Grasos/farmacología , Linfopoyesis/efectos de los fármacos , Subgrupos de Linfocitos T/efectos de los fármacos , Animales , Grasas de la Dieta/toxicidad , Duodeno/metabolismo , Duodeno/microbiología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Ácidos Grasos/química , Ácidos Grasos/toxicidad , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiología , Regulación de la Expresión Génica/inmunología , Ácidos Láuricos/toxicidad , Receptores X del Hígado , Sistema de Señalización de MAP Quinasas , Ratones , Peso Molecular , Receptores Nucleares Huérfanos/biosíntesis , Receptores Nucleares Huérfanos/genética , Receptores Acoplados a Proteínas G/biosíntesis , Receptores Acoplados a Proteínas G/genética , Bazo/inmunología , Bazo/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Células Th17/inmunología , Transcriptoma
11.
Brain ; 138(Pt 2): 398-413, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25524711

RESUMEN

Neuroprotective approaches for central nervous system regeneration have not been successful in clinical practice so far and compounds that enhance remyelination are still not available for patients with multiple sclerosis. The objective of this study was to determine potential regenerative effects of the substance cytidine-5'-diphospho (CDP)-choline in two different murine animal models of multiple sclerosis. The effects of exogenously applied CDP-choline were tested in murine myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. In addition, the cuprizone-induced mouse model of de- and remyelination was used to specifically test the hypothesis that CDP-choline directly increases remyelination. We found that CDP-choline ameliorated the disease course of experimental autoimmune encephalomyelitis and exerted beneficial effects on myelin, oligodendrocytes and axons. After cuprizone-induced demyelination, CDP-choline effectively enhanced myelin regeneration and reversed motor coordination deficits. The increased remyelination arose from an increase in the numbers of proliferating oligodendrocyte precursor cells and oligodendrocytes. Further in vitro studies suggest that this process is regulated by protein kinase C. We thus identified a new mechanism to enhance central nervous system remyelination via the choline pathway. Due to its regenerative action combined with an excellent safety profile, CDP-choline could become a promising substance for patients with multiple sclerosis as an add-on therapy.


Asunto(s)
Colina/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Vaina de Mielina/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Quelantes , Cuprizona , Citidina Difosfato Colina/farmacología , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/efectos de los fármacos , Neuroglía/efectos de los fármacos , Nootrópicos/farmacología , Oligodendroglía/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Linfocitos T/efectos de los fármacos
12.
Scand J Prim Health Care ; 28(3): 146-53, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20429738

RESUMEN

OBJECTIVES: Many hospital admissions are due to inappropriate medical treatment, and discharge of fragile elderly patients involves a high risk of readmission. The present study aimed to assess whether a follow-up programme undertaken by GPs and district nurses could improve the quality of the medical treatment and reduce the risk of readmission of elderly newly discharged patients. DESIGN AND SETTING: The patients were randomized to either an intervention group receiving a structured home visit by the GP and the district nurse one week after discharge followed by two contacts after three and eight weeks, or to a control group receiving the usual care. PATIENTS: A total of 331 patients aged 78+ years discharged from Glostrup Hospital, Denmark, were included. MAIN OUTCOME MEASURES: Readmission rate within 26 weeks after discharge among all randomized patients. Control of medication, evaluated 12 weeks after discharge on 293 (89%) of the patients by an interview at home and by a questionnaire to the GP. RESULTS: Control-group patients were more likely to be readmitted than intervention-group patients (52% v 40%; p = 0.03). In the intervention group, the proportions of patients who used prescribed medication of which the GP was unaware (48% vs. 34%; p = 0.02) and who did not take the medication prescribed by the GP (39% vs. 28%; p = 0.05) were smaller than in the control group. CONCLUSION: The intervention shows a possible framework securing the follow-up on elderly patients after discharge by reducing the readmission risk and improving medication control.


Asunto(s)
Servicios de Salud para Ancianos , Alta del Paciente , Anciano , Anciano de 80 o más Años , Enfermería en Salud Comunitaria , Dinamarca , Medicina Familiar y Comunitaria , Femenino , Estudios de Seguimiento , Anciano Frágil , Servicios de Salud para Ancianos/normas , Visita Domiciliaria , Humanos , Tiempo de Internación , Masculino , Cumplimiento de la Medicación , Evaluación de Resultado en la Atención de Salud , Readmisión del Paciente , Satisfacción del Paciente , Médicos de Familia , Apoyo Social , Encuestas y Cuestionarios , Recursos Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA