Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065178

RESUMEN

In this paper, we describe a technique using a crystal spectrometer, a silicon-diode detector, and a filtered photoconductive detector to monitor photon energies in the L-shell (0.9-1 keV) and K-shell regimes for nickel and copper hybrid X-pinch x-ray sources. The detectors, system cabling, and an 8 GHz digital oscilloscope in combination enable time resolution better than 200 ps for photoconductive detectors and 700 ps for silicon-diode detectors of the K- and L-shell radiation signals, respectively. We substantially improve the relative timing of signals obtained using the oscilloscope by using an x-ray streak camera with a crystal spectrometer to monitor the L-shell line spectra and, separately, the K-shell line spectra relative to the continuum burst to better than 17 ps time resolution. This combination of instruments enabled and validated a new method by which plasma conditions in nickel and copper X-pinches can be assessed immediately before and after the ∼30 ps continuum x-ray burst produced by 370 kA hybrid X-pinches. In general, the method described here can be applied to observe otherwise highly filter-absorbed radiation in the presence of a broad spectrum of higher energy radiation by combining x-ray crystals and detectors.

2.
Phys Rev Lett ; 125(3): 035001, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32745413

RESUMEN

Magnetically driven implosions are susceptible to magnetohydrodynamic instabilities, including the magneto-Rayleigh-Taylor instability (MRTI). To reduce MRTI growth in solid-metal liner implosions, the use of a dynamic screw pinch (DSP) has been proposed [P. F. Schmit et al., Phys. Rev. Lett. 117, 205001 (2016)PRLTAO0031-900710.1103/PhysRevLett.117.205001]. In a DSP configuration, a helical return-current structure surrounds the liner, resulting in a helical magnetic field that drives the implosion. Here, we present the first experimental tests of a solid-metal liner implosion driven by a DSP. Using the 1-MA, 100-200-ns COBRA pulsed-power driver, we tested three DSP cases (with peak axial magnetic fields of 2 T, 14 T, and 20 T) and a standard z-pinch (SZP) case (with a straight return-current structure and thus zero axial field). The liners had an initial radius of 3.2 mm and were made from 650-nm-thick aluminum foil. Images collected during the experiments reveal that helical MRTI modes developed in the DSP cases, while nonhelical (azimuthally symmetric) MRTI modes developed in the SZP case. Additionally, the MRTI amplitudes for the 14-T and 20-T DSP cases were smaller than in the SZP case. Specifically, when the liner had imploded to half of its initial radius, the MRTI amplitudes for the SZP case and for the 14-T and 20-T DSP cases were, respectively, 1.1±0.3 mm, 0.7±0.2 mm, and 0.3±0.1 mm. Relative to the SZP, the stabilization obtained using the DSP agrees reasonably well with theoretical estimates.

3.
Phys Rev E ; 102(6-1): 063208, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33465966

RESUMEN

K-shell x-ray spectra from Al wire hybrid X pinches have been studied using an x-ray streak camera with better than 0.1-ns time resolution together with a Focusing Spectrograph with Spatial Resolution (FSSR) spectrograph. High-intensity radiation with a continuumlike spectrum was observed in the subnanosecond initial phase of the x-ray pulse generated by the hybrid X pinch (HXP). The absence of spectral lines in this phase and the extremely small x-ray source size indicates the importance of radiative processes in the final phase implosion dynamics. Plasma parameters in the following phases of the HXP were determined from analysis of the line intensities. Point-projection radiography together with a slit-step wedge camera and an FSSR spectrograph without time resolution were used to show the number of radiation sources, and to give information on the time-integrated photon energy spectrum.

4.
Rev Sci Instrum ; 89(10): 10C109, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399882

RESUMEN

A single channel sub-nanosecond time-resolved Thomson scattering system used for pulsed power-driven high energy density plasma measurements has been upgraded to give electron temperatures at two different times and from two different angles simultaneously. This system was used to study plasma jets created from a 15 µm thick radial Al foil load on a 1 MA pulsed power machine. Two laser pulses were generated by splitting the initial 2.3 ns duration, 10 J, 526.5 nm laser beam into two pulses, each with 2.5 J, and delaying one relative to the other by between 3 and 14 ns. Time resolution within each pulse was obtained using a streak camera to record the scattered spectra from the two beams from two scattering angles. Analysis of the scattering profile showed that the electron temperature of the Al jet increased from 20 eV up to as much as 45 eV within about 2 ns by inverse bremsstrahlung for both laser pulses. The Thomson scattering results from jets formed with opposite current polarities showed different laser heating of the electrons, as well as possibly different ion temperatures. The two-angle scattering determined that the electron density of the plasma jet was at least 2 × 1018 cm-3.

5.
Rev Sci Instrum ; 89(9): 095102, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30278768

RESUMEN

Intense magnetic fields modify quantum processes in extremely dense matter, calling for precise measurements in very harsh conditions. This endeavor becomes even more challenging because the generation of mega-gauss fields in a laboratory is far from trivial. This paper presents a unique and compact approach to generate fields above 2 MG in less than 150 ns inside a volume on the order of half a cubic centimeter. Magnetic insulation, keeping plasma ablation close to the wire surface, and mechanical inertia, limiting coil motion throughout the current discharge, enable the generation of intense magnetic fields where the shape of the conductor controls the field topology with exquisite precision and versatility, limiting the need for mapping magnetic fields experimentally.

6.
Rev Sci Instrum ; 88(11): 113502, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29195347

RESUMEN

Broadband, high resolution X-pinch radiography has been demonstrated as a method to view the instability induced small scale structure that develops in near solid density regions of both insulated and non-insulated cylindrical metallic liners. In experiments carried out on a 1-1.2 MA 100-200 ns rise time pulsed power generator, µm scale features were imaged in initially 16 µm thick Al foil cylindrical liners. Better resolution and contrast were obtained using an X-ray sensitive film than with image plate detectors because of the properties of the X-pinch X-ray source. We also discuss configuration variations that were made to the simple cylindrical liner geometry that appeared to maintain validity of the small-scale structure measurements while improving measurement quality.

7.
Rev Sci Instrum ; 88(6): 063304, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28667999

RESUMEN

A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

8.
Rev Sci Instrum ; 87(11): 11D407, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910685

RESUMEN

We have shown that Zeeman splitting of the sodium (Na) D-lines at 5890 and 5896 Å can be used to measure the magnetic field (B-field) produced in high current pulsed power experiments. We have measured the B-field next to a return current conductor in a hybrid X-pinch experiment near a peak current of about 500 kA. Na is deposited on the conductor and then is desorbed and excited by radiation from the hybrid X-pinch. The D-line emission spectrum implies B-fields of about 20 T with a return current post of 4 mm diameter or up to 120 T with a return current wire of 0.455 mm diameter. These measurements were consistent or lower than the expected B-field, thereby showing that basic Zeeman splitting can be used to measure the B-field in a pulsed-power-driven high-energy-density (HED) plasma experiment. We hope to extend these measurement techniques using suitable ionized species to measurements within HED plasmas.

9.
Rev Sci Instrum ; 87(10): 103506, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27802687

RESUMEN

We have shown that the Zeeman splitting of the sodium (Na) D-lines at 5890 Å and 5896 Å can be used to measure the magnetic field produced by the current flowing in an exploding wire prior to wire explosion. After wire explosion, the lines in question are either not visible in the strong continuum from the exploding wire plasma, or too broad to measure the magnetic field by methods discussed in this paper. We have determined magnetic fields in the range 10-20 T, which lies between the small field and Paschen-Back regimes for the Na D-lines, over a period of about 70 ns on a 10 kA peak current machine. The Na source is evaporated drops of water with a 0.171 M NaCl solution deposited on the wire. The Na desorbs from the wire as it heats up, and the excited vapor atoms are seen in emission lines. The measured magnetic field, determined by the Zeeman splitting of these emission lines, estimates the average radial location of the emitting Na vapor as a function of time under the assumption the current flows only in the wire during the time of the measurement.

10.
Rev Sci Instrum ; 87(10): 107101, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27802769

RESUMEN

The elliptical spectrometer described by Cahill et al. [Rev. Sci. Instrum. 85, 103114 (2014)] is designed to enable absorption X-ray spectroscopy under circumstances in which the object plasma is, itself, a relatively bright X-ray emitter. An implementation of this design was developed using a doubly curved mica crystal for X-ray dispersion. The geometry of the spectrometer was verified by ray tracing calculations assuming Bragg reflection from mica in the second order. Control of X-ray reflections from other orders was an anticipated challenge and has been attempted by means of filtering and control of the source spectrum. These efforts have been found to be insufficient to allow the spectrometer to operate as designed because of the strong fifth order reflection of source radiation by the mica crystal. Potential solutions are presented that may enable a successful implementation of this novel crystal spectrometer design.

11.
Rev Sci Instrum ; 83(8): 083507, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22938294

RESUMEN

In this work we demonstrate a design for obtaining laser backlighting (e.g., interferometry) and time-resolved extreme ultraviolet self-emission images along the same line-of-sight. This is achieved by modifying a single optical component in the laser collection optics with apertures and pinhole arrangements suitable for single or multiple frame imaging onto a gated detector, such as a microchannel plate. Test results for exploding wire experiments show that machining of the optic does not affect the overall quality of the recovered laser images, and that, even with a multiple frame system, the area sacrificed to achieve collinear imaging is relatively small. The diagnostics can therefore allow direct correlation of laser and self-emission images and their derived quantities, such as electron density in the case of interferometry. Simple methods of image correlation are also demonstrated.

12.
Rev Sci Instrum ; 83(7): 073502, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22852690

RESUMEN

We report here the calibration and analysis techniques used to obtain spatially resolved density and temperature measurements of a pair of imploding aluminum wires from x-ray absorption spectra. A step wedge is used to measure backlighter fluence at the film, allowing transmission through the sample to be measured with an accuracy of ±14% or better. A genetic algorithm is used to search the allowed plasma parameter space and fit synthetic spectra with 20 µm spatial resolution to the measured spectra, taking into account that the object plasma nonuniformity must be physically reasonable. The inferred plasma conditions must be allowed to vary along the absorption path in order to obtain a fit to the spectral data. The temperature is estimated to be accurate to within ±25% and the density to within a factor of two. This information is used to construct two-dimensional maps of the density and temperature of the object plasma.

13.
Rev Sci Instrum ; 82(6): 063501, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21721685

RESUMEN

We present here the use of absorption spectroscopy of the continuum radiation from x-pinch-produced point x-ray sources as a diagnostic to investigate the properties of aluminum plasmas created by pulsed power machines. This technique is being developed to determine the charge state, temperature, and density as a function of time and space under conditions that are inaccessible to x-ray emission spectroscopic diagnostics. The apparatus and its characterization are described, and the spectrometer dispersion, magnification, and resolution are calculated and compared with experimental results. Spectral resolution of about 5000 and spatial resolution of about 20 µm are demonstrated. This spectral resolution is the highest available to date in an absorption experiment. The beneficial properties of the x-pinch x-ray source as the backlighter for this diagnostic are the small source size (<5 µm), smooth continuum radiation, and short pulse duration (<0.1 ns). Results from a closely spaced (1 mm) exploding wire pair are shown and the general features are discussed.

14.
Rev Sci Instrum ; 81(10): 10E501, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21034029

RESUMEN

Monochromatic x-ray backlighting has been employed with great success for imaging of plasmas with strong self-emission such as x-pinches and wire array z-pinches. However, implementation of a monochromatic backlighting system typically requires extremely high quality spherically bent crystals which are difficult to manufacture and can be prohibitively expensive. Furthermore, the crystal must have a direct line of sight to the object, which typically emits copious amounts of radiation and debris. We present a quasimonochromatic x-ray backlighting system which employs an elliptically bent mica crystal as the dispersive element. In this scheme a narrow band of continuum radiation is selected for imaging, instead of line radiation in the case of monochromatic imaging. The flat piece of mica is bent using a simple four-point bending apparatus that allows the curvature of the crystal to be adjusted in situ for imaging in the desired wavelength band. This system has the advantage that it is very cost effective, has a large aperture, and is extremely flexible. The principles of operation of the system are discussed and its performance is analyzed.

15.
J Thromb Haemost ; 7(11): 1886-96, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19740102

RESUMEN

BACKGROUND: In resting platelets, endothelial cell specific adhesion molecule (ESAM) is located in alpha granules, increasing its cell surface expression following platelet activation. However, the function of ESAM on platelets is unknown. OBJECTIVE: To determine whether ESAM has a role in thrombus formation. METHODS AND RESULTS: We found that following platelet activation ESAM localizes to the junctions between adjacent platelets, suggesting a role for this protein in contact-dependent events that regulate thrombus formation. To test this hypothesis we examined the effect of ESAM deletion on platelet function. In vivo, ESAM(-/-) mice achieved more stable hemostasis than wild-type mice following tail transection, and developed larger thrombi following laser injury of cremaster muscle arterioles. In vitro, ESAM(-/-) platelets aggregated at lower concentrations of G protein-dependent agonists than wild-type platelets, and were more resistant to disaggregation. In contrast, agonist-induced calcium mobilization, alpha(IIb)beta(3) activation, alpha-granule secretion and platelet spreading, were normal in ESAM-deficient platelets. To understand the molecular mechanism by which ESAM regulates platelet activity, we utilized a PDZ domain array to identify the scaffold protein NHERF-1 as an ESAM binding protein, and further demonstrated that it associates with ESAM in both resting and activated platelets. CONCLUSIONS: These findings support a model in which ESAM localizes to platelet contacts following platelet activation in order to limit thrombus growth and stability so that the optimal hemostatic response occurs following vascular injury.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Uniones Intercelulares/química , Adhesividad Plaquetaria , Trombosis/patología , Animales , Hemostasis , Ratones , Ratones Noqueados , Activación Plaquetaria , Transporte de Proteínas , Trombosis/etiología
16.
Mol Cell Biol ; 29(20): 5578-89, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19667077

RESUMEN

The adapter protein SH2 domain-containing leukocyte protein of 76 kDa (SLP-76) is an essential mediator of signaling from the T-cell antigen receptor (TCR). We report here that SLP-76 also mediates signaling downstream of integrins in T cells and that SLP-76-deficient T cells fail to support adhesion to integrin ligands. In response to both TCR and integrin stimulation, SLP-76 relocalizes to surface microclusters that colocalize with phosphorylated signaling proteins. Disruption of SLP-76 recruitment to the protein named LAT (linker for activation of T cells) inhibits SLP-76 clustering downstream of the TCR but not downstream of integrins. Conversely, an SLP-76 mutant unable to bind ADAP (adhesion and degranulation-promoting adapter protein) forms clusters following TCR but not integrin engagement and fails to support T-cell adhesion to integrin ligands. These findings demonstrate that SLP-76 relocalizes to integrin-initiated signaling complexes by a mechanism different from that employed during TCR signaling and that SLP-76 relocalization corresponds to SLP-76-dependent integrin function in T cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Integrinas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Adhesión Celular/fisiología , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular/fisiología , Humanos , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rap1/metabolismo
17.
Rev Sci Instrum ; 80(12): 123505, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20059143

RESUMEN

For the first time, a geometry has been developed to allow for an axial imaging system for wire-array Z-pinch experiments that produce high-resolution x-ray images. The new geometry required a significant redesign of the electrode hardware. Calibrated areal density measurements of the Z-pinch plasma including wire cores, coronal plasma, streaming plasma, and the precursor were obtained. The system used eight-wire molybdenum (Mo) X pinches in series with and directly below the Z-pinch axis to provide micron-scale x-rays sources for point-projection radiography. The images formed on the x-ray sensitive film had a 15 mm diameter field of view at the center height of the array and a magnification of about 7.5:1. Titanium (Ti) filters in front of the film transmitted radiation in the spectral range of 3-5 keV. For calibration, a separate film with the same thickness Ti filter was placed the same distance from the X pinch. This film had an unobstructed path that bypasses the Z-pinch but included step wedges for calibration of the Z-pinch plasma. The step wedges had thicknesses of tungsten (W) ranging from 0.015 to 1.1 microm to obtain areal density measurements of the W plasma from the wire-array. Images had subnanosecond temporal resolution and about 10 microm spatial resolution.

18.
Rev Sci Instrum ; 79(10): 10E316, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19044478

RESUMEN

Some issues concerning high-current electron beam transport from the X pinch cross point to the diagnostic system and measurements of the beam current by Faraday cups are discussed. Results of computer simulation of electron beam propagation from the pinch to the Faraday cup give limits for the measured current for beams having different energy spreads. The beam is partially neutralized as it propagates from the X pinch to a diagnostic system, but within a Faraday cup diagnostic, space charge effects can be very important. Experimental results show evidence of such effects.

19.
Rev Sci Instrum ; 79(7): 073501, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18681698

RESUMEN

COBRA is a 0.5 Omega pulse generator driving loads of order 10 nH inductance to >1 MA current. The design is based on independently timed, laser-triggered switching of four water pulse-forming lines whose outputs are added in parallel to drive the load current pulse. The detailed design and operation of the switching to give a wide variety of current pulse shapes and rise times from 95 to 230 ns is described. The design and operation of a simple inductive load voltage monitor are described which allows good accounting of load impedance and energy dissipation. A method of eliminating gas bubbles on the underside of nearly horizontal insulator surfaces in water was required for reliable operation of COBRA; a novel and effective solution to this problem is described.

20.
Rev Sci Instrum ; 79(3): 033503, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18377006

RESUMEN

A new imaging system for 1 MA scale wire-array Z-pinch experiments that produces up to five high-resolution x-ray images per experimental pulse has been developed. Calibrated areal density measurements of the Z-pinch plasma can be obtained from each pulse. The system substitutes five molybdenum (Mo) X pinches for the normal copper return-current conductors to provide point sources of x-rays for point-projection radiography. Each backlighting X pinch consists of four Mo wires, the x-ray burst timing of which was controlled by varying the wire diameter (mass) from 10.2 to 30 microm in the five X pinches. Typical images have a 16x8 mm2 field of view at the wire array and a magnification of about 6.5:1 on the x-ray-sensitive film. Titanium (Ti) filters in front of the films transmit continuum radiation in the spectral range of 3-5 keV. Inclusion on the Ti of a step wedge having known thickness increments of the same material as the wires enables the calibrated areal density measurements to be made of the exploding wire plasmas. Here, we used tungsten (W) step wedges with step thicknesses ranging from 0.015 to 1.1 microm to obtain accurate (+/-10%) areal density measurements of W plasmas from the spatial profile of film exposure. When imaging arrays that produce intense radiation pulses, a plastic monofilament "quencher" is placed on axis to avoid film saturation. Images have subnanosecond temporal resolution and about 7 microm spatial resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...