Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38725126

RESUMEN

Programmed cell death receptor 1/Programmed cell death ligand 1 (PD-L1) checkpoint pathway is responsible for the control of immune cell responses. Immunotherapy using checkpoint inhibitors, such as anti-PD-L1 therapy, aids disease management and potentiates clinical outcomes. This study aimed to analyze the performance of the Leica Biosystems (LBS) USA FDA class I in vitro diagnostic monoclonal antibody (clone 73-10) to detect PD-L1 expression in breast, colorectal, and hepatocellular carcinomas compared with the class III FDA-approved PD-L1 detecting antibodies [SP263 (Ventana), 22C3 (Dako), and 28-8 (Dako)] using 208 unique tissue microarray-based cases for each tumor type. The interassay concordances between LBS 73-10 clone and other PD-L1 antibodies ranged from 0.59 to 0.95 Cohen kappa coefficient (K) and from 0.66 to 0.90 (K) for cutoff values of 1% and 50% tumor proportion score (TPS), respectively. The 73-10 clones showed inter-pathologist agreements ranging from 0.53 to 1.0 (K) and 0.34 to 0.94 (K) for cutoff values of 1% and 50% TPS, respectively. For the immune cell proportion score (IPS) using a cutoff of 1%, the Kappa coefficient of interassay concordances and inter-pathologist agreements ranged from 0.34 to 0.94. The 73-10 clone assay's sensitivity ranged from 78.3% to 100% (TPS ≥1%), 100% (TPS ≥50%), and 77.4% to 93.5% (IPS ≥1%), while its specificity was 97.9% to 100% (TPS ≥1%), 99.5% to 99.8% (TPS ≥50%), and 97.9% to 100% (IPS ≥1%). This exploratory evaluation of LBS 73-10 monoclonal antibody on a large set of breast, colorectal, and hepatocellular carcinomas showed the assay's technical performance is comparable to the FDA-approved companion/complementary diagnostics PD-L1 detection assays.

2.
Mol Ther Oncol ; 32(1): 200758, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38596304

RESUMEN

Oncolytic viruses are engineered to selectively kill tumor cells and have demonstrated promising results in early-phase clinical trials. To further modulate the innate and adaptive immune system, we generated AZD4820, a vaccinia virus engineered to express interleukin-12 (IL-12), a potent cytokine involved in the activation of natural killer (NK) and T cells and the reprogramming of the tumor immune microenvironment. Testing in cultured human tumor cell lines demonstrated broad in vitro oncolytic activity and IL-12 transgene expression. A surrogate virus expressing murine IL-12 demonstrated antitumor activity in both MC38 and CT26 mouse syngeneic tumor models that responded poorly to immune checkpoint inhibition. In both models, AZD4820 significantly upregulated interferon-gamma (IFN-γ) relative to control mice treated with oncolytic vaccinia virus (VACV)-luciferase. In the CT26 study, 6 of 10 mice had a complete response after treatment with AZD4820 murine surrogate, whereas control VACV-luciferase-treated mice had 0 of 10 complete responders. AZD4820 treatment combined with anti-PD-L1 blocking antibody augmented tumor-specific T cell immunity relative to monotherapies. These findings suggest that vaccinia virus delivery of IL-12, combined with immune checkpoint blockade, elicits antitumor immunity in tumors that respond poorly to immune checkpoint inhibitors.

3.
Cytopathology ; 35(4): 464-472, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38519745

RESUMEN

OBJECTIVE: The Visiopharm artificial intelligence (AI) algorithm for oestrogen receptor (ER) immunohistochemistry (IHC) in whole slide images (WSIs) has been successfully validated in surgical pathology. This study aimed to assess its efficacy in cytology specimens. METHODS: The study cohort comprised 105 consecutive cytology specimens with metastatic breast carcinoma. ER IHC WSIs were seamlessly integrated into the Visiopharm platform from the Image Management System (IMS) during our routine digital workflow, and an AI algorithm was employed for analysis. ER AI scores were compared with pathologists' manual consensus scores. Optimization steps were implemented and evaluated to reduce discordance. RESULTS: The overall concordance between pathologists' scores and AI scores was excellent (99/105, 94.3%). Six cases exhibited discordant results, including two false-negative (FN) cases due to abundant histiocytes incorrectly counted as negatively stained tumour cells by AI, two FN cases owing to weak staining, and two false-positive (FP) cases where pigmented macrophages were erroneously counted as positively stained tumour cells by AI. The Pearson correlation coefficient of ER-positive percentages between pathologists' and AI scores was 0.8483. Optimization steps, such as lowering the cut-off threshold and additional training using higher input magnification, significantly improved accuracy. CONCLUSIONS: The automated ER AI algorithm demonstrated excellent concordance with pathologists' assessments and accurately differentiated ER-positive from ER-negative metastatic breast carcinoma cytology cases. However, precision in identifying tumour cells in cytology specimens requires further enhancement.


Asunto(s)
Algoritmos , Inteligencia Artificial , Neoplasias de la Mama , Citodiagnóstico , Inmunohistoquímica , Receptores de Estrógenos , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico , Femenino , Receptores de Estrógenos/metabolismo , Inmunohistoquímica/métodos , Proyectos Piloto , Citodiagnóstico/métodos , Metástasis de la Neoplasia , Persona de Mediana Edad , Adulto , Anciano , Citología
4.
Nat Commun ; 15(1): 683, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267402

RESUMEN

Immune cell dysfunction within the tumor microenvironment (TME) undermines the control of cancer progression. Established tumors contain phenotypically distinct, tumor-specific natural killer (NK) cells; however, the temporal dynamics, mechanistic underpinning and functional significance of the NK cell compartment remains incompletely understood. Here, we use photo-labeling, combined with longitudinal transcriptomic and cellular analyses, to interrogate the fate of intratumoral NK cells. We reveal that NK cells rapidly lose effector functions and adopt a distinct phenotypic state with features associated with tissue residency. NK cell depletion from established tumors did not alter tumor growth, indicating that intratumoral NK cells cease to actively contribute to anti-tumor responses. IL-15 administration prevented loss of function and improved tumor control, generating intratumoral NK cells with both tissue-residency characteristics and enhanced effector function. Collectively, our data reveals the fate of NK cells after recruitment into tumors and provides insight into how their function may be revived.


Asunto(s)
Internado y Residencia , Neoplasias , Humanos , Perfilación de la Expresión Génica , Células Asesinas Naturales , Transcriptoma , Microambiente Tumoral
5.
Nat Commun ; 15(1): 682, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267413

RESUMEN

Tumour dendritic cells (DCs) internalise antigen and upregulate CCR7, which directs their migration to tumour-draining lymph nodes (dLN). CCR7 expression is coupled to an activation programme enriched in regulatory molecule expression, including PD-L1. However, the spatio-temporal dynamics of CCR7+ DCs in anti-tumour immune responses remain unclear. Here, we use photoconvertible mice to precisely track DC migration. We report that CCR7+ DCs are the dominant DC population that migrate to the dLN, but a subset remains tumour-resident despite CCR7 expression. These tumour-retained CCR7+ DCs are phenotypically and transcriptionally distinct from their dLN counterparts and heterogeneous. Moreover, they progressively downregulate the expression of antigen presentation and pro-inflammatory transcripts with more prolonged tumour dwell-time. Tumour-residing CCR7+ DCs co-localise with PD-1+CD8+ T cells in human and murine solid tumours, and following anti-PD-L1 treatment, upregulate stimulatory molecules including OX40L, thereby augmenting anti-tumour cytolytic activity. Altogether, these data uncover previously unappreciated heterogeneity in CCR7+ DCs that may underpin a variable capacity to support intratumoural cytotoxic T cells.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Animales , Ratones , Receptores CCR7/genética , Neoplasias/genética , Neoplasias/terapia , Presentación de Antígeno , Células Dendríticas
6.
Cancer Biol Ther ; 25(1): 2296048, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38206570

RESUMEN

CD73 is a cell surface 5'nucleotidase (NT5E) and key node in the catabolic process generating immunosuppressive adenosine in cancer. Using a murine monoclonal antibody surrogate of Oleclumab, we investigated the effect of CD73 inhibition in concert with cytotoxic therapies (chemotherapies as well as fractionated radiotherapy) and PD-L1 blockade. Our results highlight improved survival in syngeneic tumor models of colorectal cancer (CT26 and MC38) and sarcoma (MCA205). This therapeutic outcome was in part driven by cytotoxic CD8 T-cells, as evidenced by the detrimental effect of CD8 depleting antibody treatment of MCA205 tumor bearing mice treated with anti-CD73, anti-PD-L1 and 5-Fluorouracil+Oxaliplatin (5FU+OHP). We hypothesize that the improved responses are tumor microenvironment (TME)-driven, as suggested by the lack of anti-CD73 enhanced cytopathic effects mediated by 5FU+OHP on cell lines in vitro. Pharmacodynamic analysis, using imaging mass cytometry and RNA-sequencing, revealed noteworthy changes in specific cell populations like cytotoxic T cells, B cells and NK cells in the CT26 TME. Transcriptomic analysis highlighted treatment-related modulation of gene profiles associated with an immune response, NK and T-cell activation, T cell receptor signaling and interferon (types 1 & 2) pathways. Inclusion of comparator groups representing the various components of the combination allowed deconvolution of contribution of the individual therapeutic elements; highlighting specific effects mediated by the anti-CD73 antibody with respect to immune-cell representation, chemotaxis and myeloid biology. These pre-clinical data reflect complementarity of adenosine blockade with cytotoxic therapy, and T-cell checkpoint inhibition, and provides new mechanistic insights in support of combination therapy.


Asunto(s)
Anticuerpos Monoclonales , Sarcoma , Animales , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Inmunosupresores , Adenosina , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Microambiente Tumoral
7.
Pathol Res Pract ; 251: 154843, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37826873

RESUMEN

BACKGROUND: The establishment of minimum standards for display selection for the whole slide image (WSI) interpretation has not been fully defined. Recently, pathologists have increasingly preferred using remote displays for clinical diagnostics. Our study aims to assess and compare the performance of three fixed work displays and one remote personal display in accurately identifying ten selected pathologic features integrated into WSIs. DESIGN: Hematoxylin and eosin-stained glass slides were digitized using Philips scanners. Seven practicing pathologists and three residents reviewed ninety WSIs to identify ten pathologic features using the LG, Dell, and Samsung and an optional consumer-grade display. Ten pathologic features included eosinophils, neutrophils, plasma cells, granulomas, necrosis, mucin, hemosiderin, crystals, nucleoli, and mitoses. RESULTS: The accuracy of the identification of ten features on different types of displays did not significantly differ among the three types of "fixed" workplace displays. The highest accuracy was observed for the identification of neutrophils, eosinophils, plasma cells, granuloma, and mucin. On the other hand, a lower accuracy was observed for the identification of crystals, mitoses, necrosis, hemosiderin, and nucleoli. Participant pathologists and residents preferred the use of larger displays (>30″) with a higher pixel count, resolution, and luminance. CONCLUSION: Most features can be identified using any display. However, certain features posed more challenges across the three fixed display types. Furthermore, the use of a remote personal consumer-grade display chosen according to the pathologists' preference showed similar feature identification accuracy. Several factors of display characteristics seemed to influence pathologists' display preferences such as the display size, color, contrast ratio, pixel count, and luminance calibration. This study supports the use of standard "unlocked" vendor-agnostic displays for clinical digital pathology workflow rather than purchasing "locked" and more expensive displays that are part of a digital pathology system.


Asunto(s)
Microscopía , Patología Quirúrgica , Humanos , Microscopía/métodos , Patología Quirúrgica/métodos , Hemosiderina , Mucinas , Necrosis
8.
J Immunol ; 210(4): 496-503, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36548468

RESUMEN

The thymus is a hormone-sensitive organ, which involutes with age in response to production of sex steroids. Thymic involution leads to a decrease in the generation of recent thymic emigrants (RTEs), resulting in a reduced response to immune challenges such as cancer. Interestingly, the standard of care for prostate cancer patients is androgen deprivation therapy (ADT), which leads to thymic regeneration and an increase in thymic output. It remains unknown whether these newly produced T cells can contribute to the antitumor immune response. This study defines the kinetics of thymic regeneration in response to ADT in mice, determining that thymic epithelial cell proliferation is critical for the increase in RTE output. Using a mouse model to track RTE in vivo, we demonstrate that these newly generated RTEs can traffic to tumors, where they become activated and produce effector cytokines at levels similar to more mature T cells. Collectively, these data suggest that RTEs produced from ADT-induced thymic regeneration could be harnessed for the antitumor immune response.


Asunto(s)
Neoplasias de la Próstata , Timo , Humanos , Masculino , Andrógenos , Antagonistas de Andrógenos/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Linfocitos T
9.
Cancer Cell ; 40(9): 1027-1043.e9, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36099881

RESUMEN

Programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1)-blockade immunotherapies have limited efficacy in the treatment of bladder cancer. Here, we show that NKG2A associates with improved survival and responsiveness to PD-L1 blockade immunotherapy in bladder tumors that have high abundance of CD8+ T cells. In bladder tumors, NKG2A is acquired on CD8+ T cells later than PD-1 as well as other well-established immune checkpoints. NKG2A+ PD-1+ CD8+ T cells diverge from classically defined exhausted T cells through their ability to react to human leukocyte antigen (HLA) class I-deficient tumors using T cell receptor (TCR)-independent innate-like mechanisms. HLA-ABC expression by bladder tumors is progressively diminished as disease progresses, framing the importance of targeting TCR-independent anti-tumor functions. Notably, NKG2A+ CD8+ T cells are inhibited when HLA-E is expressed by tumors and partly restored upon NKG2A blockade in an HLA-E-dependent manner. Overall, our study provides a framework for subsequent clinical trials combining NKG2A blockade with other T cell-targeted immunotherapies, where tumors express higher levels of HLA-E.


Asunto(s)
Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias de la Vejiga Urinaria , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos , Antígenos de Histocompatibilidad Clase I , Humanos , Receptor de Muerte Celular Programada 1 , Neoplasias de la Vejiga Urinaria/terapia , Antígenos HLA-E
10.
Clin Cancer Res ; 28(17): 3709-3719, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35699623

RESUMEN

PURPOSE: Combination therapies targeting immunologic checkpoints have shown promise in treating multiple tumor types. We report safety and tolerability of MEDI0562, a humanized IgG1K OX40 mAb, in combination with durvalumab (anti-PD-L1), or tremelimumab (anti-CTLA-4), in adult patients with previously treated advanced solid tumors. PATIENTS AND METHODS: In this phase I, multicenter, open-label study, patients received escalating doses of MEDI0562 (2.25, 7.5, or 22.5 mg) every 2 weeks in combination with durvalumab (1,500 mg) or tremelimumab (75 or 225 mg) every 4 weeks, intravenously, until unacceptable toxicity or progressive disease. Tumor assessments were performed every 8 weeks. The primary objective was to evaluate safety and tolerability. RESULTS: Among the 27 and 31 patients who received MEDI0562 + durvalumab or MEDI0562 + tremelimumab, 74.1% and 67.7% reported a treatment-related adverse event (AE), and 22.2% and 19.4% experienced a treatment-emergent AE that led to discontinuation, respectively. The MTD of MEDI0562 + durvalumab was 7.5 mg MEDI0562 + 1,500 mg durvalumab; the maximum administered dose of MEDI0562 + tremelimumab was 22.5 mg MEDI0562 + 225 mg tremelimumab. Three patients in the MEDI0562 + durvalumab arm had a partial response. The mean percentage of Ki67+CD4+ and Ki67+CD8+ memory T cells increased by >100% following the first dose of MEDI0562 + durvalumab or tremelimumab in all dose cohorts. A decrease in OX40+FOXP3 regulatory T cells was observed in a subset of patients with available paired biopsies. CONCLUSIONS: Following dose escalation, moderate toxicity was observed in both treatment arms, with no clear efficacy signals demonstrated.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias , Adulto , Anticuerpos Monoclonales , Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Humanos , Antígeno Ki-67 , Neoplasias/tratamiento farmacológico , Neoplasias/etiología
11.
J Exp Med ; 219(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35472220

RESUMEN

Improving the efficacy of immune checkpoint therapies will require a better understanding of how immune cells are recruited and sustained in tumors. Here, we used the photoconversion of the tumor immune cell compartment to identify newly entering lymphocytes, determine how they change over time, and investigate their egress from the tumor. Combining single-cell transcriptomics and flow cytometry, we found that while a diverse mix of CD8 T cell subsets enter the tumor, all CD8 T cells retained within this environment for more than 72 h developed an exhausted phenotype, revealing the rapid establishment of this program. Rather than forming tumor-resident populations, non-effector subsets, which express TCF-1 and include memory and stem-like cells, were continuously recruited into the tumor, but this recruitment was balanced by concurrent egress to the tumor-draining lymph node. Thus, the TCF-1+ CD8 T cell niche in tumors is highly dynamic, with the circulation of cells between the tumor and peripheral lymphoid tissue to bridge systemic and intratumoral responses.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Inmunoterapia , Tejido Linfoide , Subgrupos de Linfocitos T
12.
Nature ; 606(7915): 791-796, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35322234

RESUMEN

Immune checkpoint blockade has revolutionized the field of oncology, inducing durable anti-tumour immunity in solid tumours. In patients with advanced prostate cancer, immunotherapy treatments have largely failed1-5. Androgen deprivation therapy is classically administered in these patients to inhibit tumour cell growth, and we postulated that this therapy also affects tumour-associated T cells. Here we demonstrate that androgen receptor (AR) blockade sensitizes tumour-bearing hosts to effective checkpoint blockade by directly enhancing CD8 T cell function. Inhibition of AR activity in CD8 T cells prevented T cell exhaustion and improved responsiveness to PD-1 targeted therapy via increased IFNγ expression. AR bound directly to Ifng and eviction of AR with a small molecule significantly increased cytokine production in CD8 T cells. Together, our findings establish that T cell intrinsic AR activity represses IFNγ expression and represents a novel mechanism of immunotherapy resistance.


Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia , Neoplasias de la Próstata , Receptores Androgénicos , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interferón gamma , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Insuficiencia del Tratamiento
13.
Mater Horiz ; 9(1): 261-270, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34590657

RESUMEN

This study demonstrates enhancement of in-device electro-optic activity via a series of theory-inspired organic electro-optic (OEO) chromophores based on strong (diarylamino)phenyl electron donating moieties. These chromophores are tuned to minimize trade-offs between molecular hyperpolarizability and optical loss. Hyper-Rayleigh scattering (HRS) measurements demonstrate that these chromophores, herein described as BAH, show >2-fold improvement in ß versus standard chromophores such as JRD1, and approach that of the recent BTP and BAY chromophore families. Electric field poled bulk devices of neat and binary BAH chromophores exhibited significantly enhanced EO coefficients (r33) and poling efficiencies (r33/Ep) compared with state-of-the-art chromophores such as JRD1. The neat BAH13 devices with charge blocking layers produced very large poling efficiencies of 11.6 ± 0.7 nm2 V-2 and maximum r33 value of 1100 ± 100 pm V-1 at 1310 nm on hafnium dioxide (HfO2). These results were comparable to that of our recently reported BAY1 but with much lower loss (extinction coefficient, k), and greatly exceeding that of other previously reported OEO compounds. 3 : 1 BAH-FD : BAH13 blends showed a poling efficiency of 6.7 ± 0.3 nm2 V-2 and an even greater reduction in k. 1 : 1 BAH-BB : BAH13 showed a higher poling efficiency of 8.4 ± 0.3 nm2 V-2, which is approximately a 2.5-fold enhancement in poling efficiency vs. JRD1. Neat BAH13 was evaluated in plasmonic-organic hybrid (POH) Mach-Zehnder modulators with a phase shifter length of 10 µm and slot widths of 80 and 105 nm. In-device BAH13 achieved a maximum r33 of 208 pm V-1 at 1550 nm, which is ∼1.7 times higher than JRD1 under equivalent conditions.

14.
Adv Mater ; 33(45): e2104174, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34545643

RESUMEN

High performance organic electro-optic (OEO) materials enable ultrahigh bandwidth, small footprint, and extremely low drive voltage in silicon-organic hybrid and plasmonic-organic hybrid photonic devices. However, practical OEO materials under device-relevant conditions are generally limited to performance of ≈300 pm V-1 (10× the EO response of lithium niobate). By means of theory-guided design, a new series of OEO chromophores is demonstrated, based on strong bis(4-dialkylaminophenyl)phenylamino electron donating groups, capable of EO coefficients (r33 ) in excess of 1000 pm V-1 . Density functional theory modeling and hyper-Rayleigh scattering measurements are performed and confirm the large improvement in hyperpolarizability due to the stronger donor. The EO performance of the exemplar chromophore in the series, BAY1, is evaluated neat and at various concentrations in polymer host and shows a nearly linear increase in r33 and poling efficiency (r33 /Ep , Ep is poling field) with increasing chromophore concentration. 25 wt% BAY1/polymer composite shows a higher poling efficiency (3.9 ± 0.1 nm2 V-2 ) than state-of-the-art neat chromophores. Using a high-ε charge blocking layer with BAY1, a record-high r33 (1100 ± 100 pm V-1 ) and poling efficiency (17.8 ± 0.8 nm2 V-2 ) at 1310 nm are achieved. This is the first reported OEO material with electro-optic response larger than thin-film barium titanate.

15.
Cell Rep ; 35(1): 108946, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826889

RESUMEN

Although embryonic brain development and neurodegeneration have received considerable attention, the events that govern postnatal brain maturation are less understood. Here, we identify the miR-29 family to be strikingly induced during the late stages of brain maturation. Brain maturation is associated with a transient, postnatal period of de novo non-CG (CH) DNA methylation mediated by DNMT3A. We examine whether an important function of miR-29 during brain maturation is to restrict the period of CH methylation via its targeting of Dnmt3a. Deletion of miR-29 in the brain, or knockin mutations preventing miR-29 to specifically target Dnmt3a, result in increased DNMT3A expression, higher CH methylation, and repression of genes associated with neuronal activity and neuropsychiatric disorders. These mouse models also develop neurological deficits and premature lethality. Our results identify an essential role for miR-29 in restricting CH methylation in the brain and illustrate the importance of CH methylation regulation for normal brain maturation.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Metilación de ADN/genética , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Animales , Animales Recién Nacidos , Secuencia de Bases , Conducta Animal , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , MicroARNs/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Neuronas/metabolismo , Neuronas/patología , Convulsiones/genética , Convulsiones/patología , Transducción de Señal , Sinapsis/metabolismo , Regulación hacia Arriba/genética
16.
Front Immunol ; 12: 626776, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763071

RESUMEN

The presence of tertiary lymphoid structures (TLS) in the tumor microenvironment is associated with better clinical outcome in many cancers. In non-small cell lung cancer (NSCLC), we have previously showed that a high density of B cells within TLS (TLS-B cells) is positively correlated with tumor antigen-specific antibody responses and increased intratumor CD4+ T cell clonality. Here, we investigated the relationship between the presence of TLS-B cells and CD4+ T cell profile in NSCLC patients. The expression of immune-related genes and proteins on B cells and CD4+ T cells was analyzed according to their relationship to TLS-B density in a prospective cohort of 56 NSCLC patients. We observed that tumor-infiltrating T cells showed marked differences according to TLS-B cell presence, with higher percentages of naïve, central-memory, and activated CD4+ T cells and lower percentages of both immune checkpoint (ICP)-expressing CD4+ T cells and regulatory T cells (Tregs) in the TLS-Bhigh tumors. A retrospective study of 538 untreated NSCLC patients showed that high TLS-B cell density was even able to counterbalance the deleterious impact of high Treg density on patient survival, and that TLS-Bhigh Treglow patients had the best clinical outcomes. Overall, the correlation between the density of TLS-Bhigh tumors with early differentiated, activated and non-regulatory CD4+ T cell cells suggest that B cells may play a central role in determining protective T cell responses in NSCLC patients.


Asunto(s)
Linfocitos B/inmunología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Pulmonares/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos T Reguladores/inmunología , Adulto , Anciano , Humanos , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Transcriptoma , Microambiente Tumoral/inmunología
17.
MAbs ; 13(1): 1857100, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33397194

RESUMEN

Preclinical studies of PD-L1 and CTLA-4 blockade have relied heavily on mouse syngeneic tumor models with intact immune systems, which facilitate dissection of immunosuppressive mechanisms in the tumor microenvironment. Commercially developed monoclonal antibodies (mAbs) targeting human PD-L1, PD-1, and CTLA-4 may not demonstrate cross-reactive binding to their mouse orthologs, and surrogate anti-mouse antibodies are often used in their place to inhibit these immune checkpoints. In each case, multiple choices exist for surrogate antibodies, which differ with respect to species of origin, affinity, and effector function. To develop relevant murine surrogate antibodies for the anti-human PD-L1 mAb durvalumab and the anti-human CTLA-4 mAb tremelimumab, rat/mouse chimeric or fully murine mAbs engineered for reduced effector function were developed and compared with durvalumab and tremelimumab. Characterization included determination of target affinity, in vivo effector function, pharmacokinetic profile, and anti-tumor efficacy in mouse syngeneic tumor models. Results showed that anti-PD-L1 and anti-CTLA-4 murine surrogates with pharmacologic properties similar to those of durvalumab and tremelimumab demonstrated anti-tumor activity in a subset of commonly used mouse syngeneic tumor models. This activity was not entirely dependent on antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis effector function, or regulatory T-cell depletion, as antibodies engineered to lack these features showed activity in models historically sensitive to checkpoint inhibition, albeit at a significantly lower level than antibodies with intact effector function.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Experimentales/tratamiento farmacológico , Linfocitos T Reguladores/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Antineoplásicos Inmunológicos/inmunología , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno B7-H1/inmunología , Antígeno CTLA-4/inmunología , Línea Celular Tumoral , Femenino , Humanos , Estimación de Kaplan-Meier , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Ratas Sprague-Dawley , Linfocitos T Reguladores/inmunología , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología
18.
Nat Chem Biol ; 17(1): 80-88, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33106660

RESUMEN

MicroRNAs are evolutionarily conserved small, noncoding RNAs that regulate diverse biological processes. Due to their essential regulatory roles, microRNA biogenesis is tightly regulated, where protein factors are often found to interact with specific primary and precursor microRNAs for regulation. Here, using NMR relaxation dispersion spectroscopy and mutagenesis, we reveal that the precursor of oncogenic microRNA-21 exists as a pH-dependent ensemble that spontaneously reshuffles the secondary structure of the entire apical stem-loop region, including the Dicer cleavage site. We show that the alternative excited conformation transiently sequesters the bulged adenine into a noncanonical protonated A+-G mismatch, conferring a substantial enhancement in Dicer processing over its ground conformational state. These results indicate that microRNA maturation efficiency may be encoded in the intrinsic dynamic ensemble of primary and precursor microRNAs, providing a potential means of regulating microRNA biogenesis in response to environmental and cellular stimuli.


Asunto(s)
ARN Helicasas DEAD-box/química , MicroARNs/química , Protones , Ribonucleasa III/química , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Clonación Molecular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Células Sf9 , Spodoptera , Termodinámica
19.
J Pathol Inform ; 11: 2, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32154039

RESUMEN

BACKGROUND: The Visiopharm human epidermal growth factor receptor 2 (HER2) digital imaging analysis (DIA) algorithm assesses digitized HER2 immunohistochemistry (IHC) by measuring cell membrane connectivity. We aimed to validate this algorithm for clinical use by comparing with pathologists' scoring and correlating with HER2 fluorescence in situ hybridization (FISH) results. MATERIALS AND METHODS: The study cohort consisted of 612 consecutive invasive breast carcinoma specimens including 395 biopsies and 217 resections. HER2 IHC slides were scanned using Philips IntelliSite Scanners, and the digital images were analyzed using Visiopharm HER2-CONNECT App to obtain the connectivity values (0-1) and scores (0, 1+, 2+, and 3+). HER2 DIA scores were compared with Pathologists' manual scores, and HER2 connectivity values were correlated with HER2 FISH results. RESULTS: The concordance between HER2 DIA scores and pathologists' scores was 87.3% (534/612). All discordant cases (n = 78) were only one-step discordant (negative to equivocal, equivocal to positive, or vice versa). Five cases (0.8%) showed discordant HER2 IHC DIA and HER2 FISH results, but all these cases had relatively low HER2 copy numbers (between 4 and 6). HER2 IHC connectivity showed significantly better correlation with HER2 copy number than HER2/CEP17 ratio. CONCLUSIONS: HER2 IHC DIA demonstrates excellent concordance with pathologists' scores and accurately discriminates between HER2 FISH positive and negative cases. HER2 IHC connectivity has better correlation with HER2 copy number than HER2/CEP17 ratio, suggesting HER2 copy number may be more important in predicting HER2 protein expression, and response to anti-HER2-targeted therapy.

20.
Molecules ; 25(4)2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098353

RESUMEN

Chromatin structure and function, and consequently cellular phenotype, is regulated in part by a network of chromatin-modifying enzymes that place post-translational modifications (PTMs) on histone tails. These marks serve as recruitment sites for other chromatin regulatory complexes that 'read' these PTMs. High-quality chemical probes that can block reader functions of proteins involved in chromatin regulation are important tools to improve our understanding of pathways involved in chromatin dynamics. Insight into the intricate system of chromatin PTMs and their context within the epigenome is also therapeutically important as misregulation of this complex system is implicated in numerous human diseases. Using computational methods, along with structure-based knowledge, we have designed and constructed a focused DNA-Encoded Library (DEL) containing approximately 60,000 compounds targeting bi-valent methyl-lysine (Kme) reader domains. Additionally, we have constructed DNA-barcoded control compounds to allow optimization of selection conditions using a model Kme reader domain. We anticipate that this target-class focused approach will serve as a new method for rapid discovery of inhibitors for multivalent chromatin reader domains.


Asunto(s)
Cromatina/genética , ADN/química , Epigenoma , Procesamiento Proteico-Postraduccional/genética , Cromatina/química , Ensamble y Desensamble de Cromatina/genética , ADN/genética , Biblioteca de Genes , Histonas/genética , Humanos , Lisina/química , Lisina/genética , Unión Proteica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA