Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2301695, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38545996

RESUMEN

Quantum dots (QDs) are promising building blocks for luminescent solar concentrators (LSCs), yet most QD-based LSCs suffer from toxic metal composition and color tinting. UV-selective harvesting QDs can enable visible transparency, but their development is restricted by large reabsorption losses and low photoluminescence quantum yield (PLQY). The developed here Ag, Mn: ZnInS2/ZnS QDs show a high PLQY of 53% due to the passivating effect of ZnS shell. These QDs selectively absorb UV light and emit orange-red light with a large Stokes shift of 180 nm. A LSC of 5 × 5 × 0.2 cm3, fabricated using a poly(lauryl methacrylate) (PLMA) as a matrix, maintains 87% of integrated PL after 7 h of UV exposure. The QD-PLMA achieved 90.7% average visible transparency (AVT) and a color rendering index (CRI) of 95.8, which is close to plain PLMA (AVT = 90.8%; CRI = 99.5), yielding excellent visible light transparency. Incorporating Si-PVs at LSC edges, the Ag, Mn: ZIS/ZnS QD-LSC achieved an optical efficiency of 1.42%, ranking competitively among high-performing UV-harvesting LSCs.

2.
Small Methods ; 8(2): e2300133, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37075734

RESUMEN

Thick-shell colloidal quantum dots (QDs) are promising building blocks for solar technologies due to their size/composition/shape-tunable properties. However, most well-performed thick-shell QDs suffer from frequent use of toxic metal elements including Pb and Cd, and inadequate light absorption in the visible and near-infrared (NIR) region due to the wide bandgap of the shell. In this work, eco-friendly AgInSe2 /AgInS2 core/shell QDs, which are optically active in the NIR region and are suitable candidates to fabricate devices for solar energy conversion, are developed. Direct synthesis suffers from simultaneously controlling the reactivity of multiple precursors, instead, a template-assisted cation exchange method is used. By modulating the monolayer growth of template QDs, gradient AgInSeS shell layers are incorporated into AgInSe2 /AgInS2 QDs. The resulting AgInSe2 /AgInSeS/AgInS2 exhibits better charge transfer than AgInSe2 /AgInS2 due to their favorable electronic band alignment, as predicted by first-principle calculations and confirmed by transient fluorescence spectroscopy. The photoelectrochemical cells fabricated with AgInSe2 /AgInSeS/AgInS2 QDs present ≈1.5-fold higher current density and better stability compared to AgInSe2 /AgInS2 . The findings define a promising approach toward multinary QDs and pave the way for engineering the QDs' electronic band structures for solar-energy conversion.

3.
ACS Nano ; 18(1): 849-857, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38147033

RESUMEN

Two-dimensional conjugated polymers (2DCPs) are an emerging class of materials that exhibit properties similar to graphene yet do not have the limitation of zero bandgap. On-surface synthesis provides exceptional control on the polymerization reaction, allowing tailoring properties by choosing suitable monomers. Heteroatom-substituted triangulene 2DCPs constitute a playing ground for such a design and are predicted to exhibit graphene-like band structures with high charge mobility and characteristic Dirac cones in conduction or valence states. However, measuring these properties experimentally is challenging and requires long-range-ordered polymers, preferably with an epitaxial relationship with the substrate. Here, we investigate the electronic properties of a mesoscale-ordered carbonyl-bridged triphenylamine 2DCP (P2TANGO) and demonstrate the presence of a Dirac cone by combining angle-resolved photoemission spectroscopy (ARPES) with density functional theory (DFT) calculations. Moreover, we measure the absolute energy position of the Dirac cone with respect to the vacuum level. We show that the bridging functionality of the triangulene (ether vs carbonyl) does not significantly perturb the band structure but strongly affects the positioning of the bands with respect to the Au(111) states and allows control of the ionization energy of the polymer. Our results provide proof of the controllable electronic properties of 2DCPs and bring us closer to their use in practical applications.

4.
Chem Sci ; 14(45): 13031-13041, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38023516

RESUMEN

Carbon, although the central element in organic chemistry, has been traditionally neglected as a target for directional supramolecular interactions. The design of supramolecular structures involving carbon-rich molecules, such as arene hydrocarbons, has been limited almost exclusively to non-directional π-stacking, or derivatisation with heteroatoms to introduce molecular assembly recognition sites. As a result, the predictable assembly of non-derivatised, carbon-only π-systems using directional non-covalent interactions remains an unsolved fundamental challenge of solid-state supramolecular chemistry. Here, we propose and validate a different paradigm for the reliable assembly of carbon-only aromatic systems into predictable supramolecular architectures: not through non-directional π-stacking, but via specific and directional halogen bonding. We present a systematic experimental, theoretical and database study of halogen bonds to carbon-only π-systems (C-I⋯πC bonds), focusing on the synthesis and structural analysis of cocrystals with diversely-sized and -shaped non-derivatised arenes, from one-ring (benzene) to 15-ring (dicoronylene) polycyclic atomatic hydrocarbons (PAHs), and fullerene C60, along with theoretical calculations and a systematic analysis of the Cambridge Structural Database. This study establishes C-I⋯πC bonds as directional interactions to arrange planar and curved carbon-only aromatic systems into predictable supramolecular motifs. In >90% of herein presented structures, the C-I⋯πC bonds to PAHs lead to a general ladder motif, in which the arenes act as the rungs and halogen bond donors as the rails, establishing a unique example of a supramolecular synthon based on carbon-only molecules. Besides fundamental importance in the solid-state and supramolecular chemistry of arenes, this synthon enables access to materials with exciting properties based on simple, non-derivatised aromatic systems, as seen from large red and blue shifts in solid-state luminescence and room-temperature phosphorescence upon cocrystallisation.

5.
Chem Sci ; 14(13): 3470-3481, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37006691

RESUMEN

Recently, photochemistry of Electron Donor-Acceptor (EDA) complexes employing catalytic amounts of electron donors have become of interest as a new methodology in the catalysis field, allowing for decoupling of the electron transfer (ET) from the bond-forming event. However, examples of practical EDA systems in the catalytic regime remain scarce, and their mechanism is not yet well-understood. Herein, we report the discovery of an EDA complex between triarylamines and α-perfluorosulfonylpropiophenone reagents, catalyzing C-H perfluoroalkylation of arenes and heteroarenes under visible light irradiation in pH- and redox-neutral conditions. We elucidate the mechanism of this reaction using a detailed photophysical characterization of the EDA complex, the resulting triarylamine radical cation, and its turnover event.

8.
Nat Chem ; 15(1): 83-90, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36302870

RESUMEN

Organic room-temperature phosphorescence, a spin-forbidden radiative process, has emerged as an interesting but rare phenomenon with multiple potential applications in optoelectronic devices, biosensing and anticounterfeiting. Covalent organic frameworks (COFs) with accessible nanoscale porosity and precisely engineered topology can offer unique benefits in the design of phosphorescent materials, but these are presently unexplored. Here, we report an approach of covalent doping, whereby a COF is synthesized by copolymerization of halogenated and unsubstituted phenyldiboronic acids, allowing for random distribution of functionalized units at varying ratios, yielding highly phosphorescent COFs. Such controlled halogen doping enhances the intersystem crossing while minimizing triplet-triplet annihilation by diluting the phosphors. The rigidity of the COF suppresses vibrational relaxation and allows a high phosphorescence quantum yield (ΦPhos ≤ 29%) at room temperature. The permanent porosity of the COFs and the combination of the singlet and triplet emitting channels enable a highly efficient COF-based oxygen sensor, with an ultra-wide dynamic detection range (~103-10-5 torr of partial oxygen pressure).

9.
J Am Chem Soc ; 143(33): 13274-13280, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34428908

RESUMEN

Boroxine and dioxaborole are the first and some of the most studied synthons of covalent organic frameworks (COFs). Despite their wide application in the design of functional COFs over the last 15 years, their synthesis still relies on the original Yaghi's condensation of boronic acids (with itself or with polyfunctional catechols), some of which are difficult to prepare, poorly soluble, or unstable in the presence of water. Here, we propose a new synthetic approach to boroxine COFs (on the basis of the transesterification of pinacol aryl boronates (aryl-Bpins) with methyl boronic acid (MBA) and dioxaborole COFs (through the metathesis of pinacol boronates with MBA-protected catechols). The aryl-Bpin and MBA-protected catechols are easy to purify, highly soluble, and bench-stable. Furthermore, the kinetic analysis of the two model reactions reveals high reversibility (Keq ∼ 1) and facile control over the equilibrium. Unlike the conventional condensation, which forms water as a byproduct, the byproduct of the metathesis (MBA pinacolate) allows for easy kinetic measurements of the COF formation by conventional 1H NMR. We show the generality of this approach by the synthesis of seven known boroxine/dioxaborole COFs whose crystallinity is better or equal to those reported by conventional condensation. We also apply metathesis polymerization to obtain two new COFs, Py4THB and B2HHTP, whose synthesis was previously precluded by the insolubility and hydrolytic instability, respectively, of the boronic acid precursors.

10.
J Phys Chem Lett ; 12(27): 6431-6438, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34236197

RESUMEN

Organic room temperature phosphorescent (ORTP) compounds have recently emerged as a promising class of emissive materials with a multitude of potential applications. However, the number of building blocks that give rise to efficient ORTP materials is still limited, and the rules for engineering phosphorescent properties in organic solids are not well understood. Here, we report ORTP in a series of N-substituted acridone derivatives with electron-donating, electron-withdrawing, and sterically bulky substituents. X-ray crystallography shows that the solid-state packing varies progressively between coparallel and antiparallel π-stacking and separated π-dimers, depending on the size of the substituent. The detailed photophysical studies supported by DFT calculations reveal complex dynamics of singlet and triplet excited states, depending on the electronic effects of substituents and solid-state packing. The programmable molecular packing provides a lever to control the triplet-triplet annihilation that is manifested as delayed fluorescence in acridone derivatives with continuous (both parallel and antiparallel) π-stacking.


Asunto(s)
Acridonas/química , Luminiscencia , Temperatura , Electrones , Modelos Moleculares , Conformación Molecular
11.
Angew Chem Int Ed Engl ; 59(51): 23030-23034, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-32822514

RESUMEN

Red luminescence is found in off-white tris(iodoperchlorophenyl)methane (3I-PTMH ) crystals which is characterized by a high photoluminescence quantum yield (PLQY 91 %) and color purity (CIE coordinates 0.66, 0.34). The emission originates from the doublet excited state of the neutral radical 3I-PTMR , which is spontaneously formed and becomes embedded in the 3I-PTMH matrix. The radical defect can also be deliberately introduced into 3I-PTMH crystals which maintain a high PLQY with up to 4 % radical concentration. The immobilized iodinated radical demonstrates excellent photostability (estimated half-life >1 year under continuous irradiation) and intriguing luminescent lifetime (69 ns). TD-DFT calculations demonstrate that electron-donating iodine atoms accelerate the radiative transition while the rigid halogen-bonded matrix suppresses the nonradiative decay.

12.
Chem Commun (Camb) ; 56(47): 6432-6435, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393948

RESUMEN

The nitro group (NO2) is one of the most common electron-withdrawing groups but it has rarely been used in the design of organic semiconductors (OSCs). Herein, we report the n-type semiconducting behavior of simple fluorenone derivatives functionalized with NO2 and CN groups. While the electron mobilities measured in the thin film field-effect transistors are modest (10-6-10-4 cm2 V-1 s-1), the nitrofluorenone OSCs offer excellent air-stability and remarkable tunability of energy levels via facile modification of the substitution pattern. We study the effect of substituents on the electrochemical properties, molecular and crystal structure, and the charge transport properties of nitrofluorenones to revitalize the underestimated potential of NO2 functionalization in organic electronics.

13.
J Am Chem Soc ; 142(19): 8862-8870, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32311256

RESUMEN

We report the first transformation between crystalline vinylene-linked two-dimensional (2D) polymers and crystalline cyclobutane-linked three-dimensional (3D) polymers. Specifically, absorption-edge irradiation of the 2D poly(arylenevinylene) covalent organic frameworks (COFs) results in topological [2 + 2] cycloaddition cross-linking of the π-stacked layers in 3D COFs. The reaction is reversible, and heating to 200 °C leads to a cycloreversion while retaining the COF crystallinity. The resulting difference in connectivity is manifested in the change of mechanical and electronic properties, including exfoliation, blue-shifted UV-vis absorption, altered luminescence, modified band structure, and different acid-doping behavior. The Li-impregnated 2D and 3D COFs show a significant room-temperature ion conductivity of 1.8 × 10-4 S/cm and 3.5 × 10-5 S/cm, respectively. Even higher room-temperature proton conductivity of 1.7 × 10-2 S/cm and 2.2 × 10-3 S/cm was found for H2SO4-treated 2D and 3D COFs, respectively.

14.
J Am Chem Soc ; 142(5): 2155-2160, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31948234

RESUMEN

The black crystalline (aza)triangulene-based covalent organic framework TANG-COF was synthesized from its trinitro-TANG precursor via a one-pot, two-step reaction involving Pd-catalyzed hydrogenation and polycondensation with an aromatic dialdehyde. High crystallinity and permanent porosity of the layered two-dimensional (2D) structure were established. The rigid, electron-rich trioxaazatriangulene (TANG) building block enables strong π-electron interactions manifested in broad absorptions across the visible and NIR regions (Eg ≈ 1.2 eV). The high HOMO energy of TANG-COF (-4.8 eV) enables facile p doping, resulting in electrical conductivity of up to 10-2 S/cm and room-temperature paramagnetic behavior with a spin concentration of ∼10%. DFT calculations reveal dispersion of the highest occupied band both within the 2D polymer layers (0.28 eV) and along their π-stacked direction (0.95 eV).

15.
Angew Chem Int Ed Engl ; 59(25): 9977-9981, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31725174

RESUMEN

We report a series of highly emissive azatriangulenetrione (TANGO) solids in which the luminescent properties are controlled by engineering the molecular packing by adjusting the steric size of substituents. The co-alignment of "phosphorogenic" carbonyl groups within the π-stacks results in an almost pure triplet emission in HTANGO, TCTANGO, TBTANGO and TITANGO, while their rotation by ≈60° in the sterically hindered tBuTANGO leads to an almost pure singlet emission. Despite strong π-interactions, aggregation-induced quenching and triplet-triplet annihilation are avoided in HTANGO and TCTANGO which display efficient phosphorescence in the solid state. To our knowledge, HTANGO with the solid-state phosphorescence quantum yield of 42 % at room temperature is the most efficient phosphor composed of the 1st /2nd raw elements only.

16.
Angew Chem Int Ed Engl ; 58(39): 13753-13757, 2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31359568

RESUMEN

Designing structural order in electronically active organic solids remains a great challenge in the field of materials chemistry. Now, 2D poly(arylene vinylene)s prepared as highly crystalline covalent organic frameworks (COFs) by base-catalyzed aldol condensation of trimethyltriazine with aromatic dialdehydes are reported. The synthesized polymers are highly emissive (quantum yield of up to 50 %), as commonly observed in their 1D analogues poly(phenylene vinylene)s. The inherent well-defined porosity (surface area ca. 1000 m2 g-1 , pore diameter ca. 11 Šfor the terephthaldehyde derived COF-1) and 2D structure of these COFs also present a new set of properties and are likely responsible for the emission color, which is sensitive to the environment. COF-1 is highly hydrophilic and reveals a dramatic macroscopic structural reorganization that has not been previously observed in framework materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA