RESUMEN
Perfluoroalkyl substances (PFASs) are typical persistent organic pollutants, and their removal is urgently required but challenging. Photocatalysis has shown potential in PFASs degradation due to the redox capabilities of photoinduced charge carriers in photocatalysts. Herein, hexagonal ZnIn2S4 (ZIS) nanosheets were synthesized by a one-pot oil bath method and were well characterized by a series of techniques. In the degradation of sodium p-perfluorous nonenoxybenzenesulfonate (OBS), one kind of representative PFASs, the as-synthesized ZIS showed activity superior to P25 TiO2 under both simulated sunlight and visible-light irradiation. The good photocatalytic performance was attributed to the enhanced light absorption and facilitated charge separation. The pH conditions were found crucial in the photocatalytic process by influencing the OBS adsorption on the ZIS surface. Photogenerated e- and h+ were the main active species involved in OBS degradation in the ZIS system. This work confirmed the feasibility and could provide mechanistic insights into the degradation and defluorination of PFASs by visible-light photocatalysis.
Asunto(s)
Fluorocarburos , Luz , Fotólisis , Fluorocarburos/química , Nanoestructuras/química , Catálisis , Contaminantes Químicos del Agua/química , Zinc/química , Indio/química , Modelos QuímicosRESUMEN
Finding high-temperature superconductivity in light-weight element containing compounds at atmosphere pressure is currently a research hotspot but has not been reached yet. Here it is proposed that hard or superhard materials can be promising candidates to possess the desirable high-temperature superconductivity. By studying the electronic structures and superconducting properties of H and Li doped c-BN within the framework of the first-principles, it is demonstrated that the doped c-BN are indeed good superconductors at ambient pressure after undergoing the phase transition from the insulating to metallic behavior, though holding different nature of metallization. Li doped c-BN is predicted to exhibit the superconducting transition temperature of ≈58 K, while H doped c-BN has stronger electron-phonon interaction and possesses a higher transition temperature of 122 K. These results and findings thus point out a new direction for exploring the ambient-pressure higher-temperature superconductivity in hard or superhard materials.
RESUMEN
Photocatalytic reduction of diluted CO2 from anthropogenic sources holds tremendous potential for achieving carbon neutrality, while the huge barrier to forming *COOH key intermediate considerably limits catalytic effectiveness. Herein, via coordination engineering of atomically scattered Ni sites in conductive metal-organic frameworks (CMOFs), we propose a facile strategy for tailoring the dband center of metal active sites towards high-efficiency photoreduction of diluted CO2. Under visible-light irradiation in pure CO2, CMOFs with Ni-O4 sites (Ni-O4 CMOFs) exhibits an outstanding rate for CO generation of 13.3 µmol h-1 with a selectivity of 94.5%, which is almost double that of its isostructural counterpart with traditional Ni-N4 sites (Ni-N4 CMOFs), outperforming most reported systems under comparable conditions. Interestingly, in simulated flue gas, the CO selectivity of Ni-N4 CMOFs decreases significantly while that of Ni-O4 CMOFs is mostly unchanged, signifying the supremacy for Ni-O4 CMOFs in leveraging anthropogenic diluted CO2. In-situ spectroscopy and density functional theory (DFT) investigations demonstrate that O coordination can move the center of the Ni sites' d-band closer to the Fermi level, benefiting the generation of *COOH key intermediate as well as the desorption of *CO and hence leading to significantly boosted activity and selectivity for CO2-to-CO photoreduction.
RESUMEN
Hydrogel is a significant type of building block for constructing macroscopic assemblies, the construction of which usually entails the incorporation of supramolecular groups. However, supramolecular group recognition is specific and only suitable for assembling two particular modified hydrogels, but not a versatile strategy. Herein, a universal strategy without modification process is proposed using polyacrylic acid (PAA) hydrogel as the adhesive layer to assemble different kinds of hydrogels. Furthermore, hydrogel assemblies with various shapes and multi-stimuli responsiveness are constructed by assembling different stimuli-responsive hydrogels with PAA hydrogel. Therefore, hydrogel assemblies are able to complete bending motions upon applying corresponding stimuli. This strategy provides a universal approach for constructing hydrogel assemblies, and also shows the potential for developing soft robots with versatile functions.
RESUMEN
Cardiovascular disease (CVD) is a chronic disease characterized by the accumulation of lipids and fibrous tissue within the arterial walls, potentially leading to vascular obstruction and an increased risk of heart disease and stroke. Hydroxyl radicals play a significant role in the formation and progression of CVD as they can instigate lipid peroxidation, resulting in cellular damage and inflammatory responses. However, precisely detecting hydroxyl radicals in CVD lesions presents significant challenges due to their high reactivity and short lifespan. Herein, we present the development and application of a novel activatable optical probe, Cy-OH-LP, designed to detect hydroxyl radicals in lipid-rich environments specifically. Built on the Cy7 molecular skeleton, Cy-OH-LP exhibits near-infrared absorption and fluorescence characteristics, and its specific response to hydroxyl radicals enables a turn-on signal in both photoacoustic and fluorescence spectra. The probe demonstrated excellent selectivity and stability in various tests. Furthermore, Cy-OH-LP was successfully applied in an in vivo model to detect hydroxyl radicals in mouse models, providing a potential tool for diagnosing and monitoring AS. The biosafety of Cy-OH-LP was also verified, showing low cytotoxicity and no significant organ damage in mice. The findings suggest that Cy-OH-LP is a promising tool for the specific detection of hydroxyl radicals in lipid-rich environments, providing new possibilities for research and clinical applications in the field of oxidative stress-related diseases.
Asunto(s)
Radical Hidroxilo , Técnicas Fotoacústicas , Animales , Radical Hidroxilo/análisis , Radical Hidroxilo/química , Radical Hidroxilo/metabolismo , Técnicas Fotoacústicas/métodos , Humanos , Ratones , Colorantes Fluorescentes/química , Carbocianinas/química , Enfermedades Cardiovasculares , MasculinoRESUMEN
Alcohol use disorder (AUD) is frequently comorbid with anxiety disorders, yet whether alcohol abuse precedes or follows the expression of anxiety remains unclear. Rodents offer control over the first drink, an advantage when testing the causal link between anxiety and AUD. Here, we utilized a risk-avoidance task to determine anxiety-like behaviors before and after alcohol exposure. We found that alcohol's anxiolytic efficacy varied among inbred mice and mice with high risk-avoidance showed heightened alcohol relief. While dopamine D1 receptors in the striatum are required for alcohol's relief, their levels alone were not correlated with relief. Rather, the ratio between striatal D1 and D2 receptors was a determinant factor for risk-avoidance and alcohol relief. We show that increasing striatal D1 to D2 receptor ratio was sufficient to promote risk-avoidance and enhance alcohol relief, even at initial exposure. Mice with high D1 to D2 receptor ratio were more prone to continue drinking despite adverse effects, a hallmark of AUD. These findings suggest that an anxiety phenotype may be a predisposing factor for AUD.
Asunto(s)
Alcoholismo , Ansiedad , Reacción de Prevención , Cuerpo Estriado , Etanol , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Animales , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Masculino , Ratones , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Alcoholismo/metabolismo , Alcoholismo/psicología , Ansiedad/metabolismo , Reacción de Prevención/efectos de los fármacos , Etanol/administración & dosificación , Etanol/efectos adversos , Ratones Endogámicos C57BL , Consumo de Bebidas Alcohólicas , Conducta Animal/efectos de los fármacos , Modelos Animales de EnfermedadRESUMEN
Cardiovascular disease, a chronic and progressive arterial wall disease, is increasingly recognized for its clinical significance. Aminopeptidases N (APN), crucial in the pathophysiological processes of vulnerable plaque, have been linked to endothelial dysfunction, oxidative stress, and plaque formation, thus highlighting their potential as biomarkers for disease progression. However, current detection methods for APN in body fluids and in vivo have limitations, including insufficient sensitivity and specificity, time delays, and the inability to directly reflect enzyme activity in plaques. To address these challenges, we developed an optical probe, HD-APN, for in vivo imaging of aminopeptidases, providing a potential implementation in cardiovascular disease. Our work demonstrated the applicability of HD-APN for specific monitoring of aminopeptidase levels in plaques and serum, shedding light on its potential for further research in cardiovascular disease.
RESUMEN
Lactic acid bacteria (LAB) are probiotic microorganisms widely used for their health benefits in the food industry. However, recent concerns regarding their safety have highlighted the need for comprehensive safety assessments. In this study, we aimed to evaluate the safety of L. bulgaricus IDCC 3601, isolated from homemade plain yogurt, via genomic, phenotypic, and toxicity-based analyses. L. bulgaricus IDCC 3601 possessed a single circular chromosome of 1,865,001 bp, with a GC content of 49.72%, and 1910 predicted coding sequences. No virulence or antibiotic resistance genes were detected. Although L. bulgaricus IDCC 3601 exhibited antibiotic resistance to gentamicin and kanamycin, this resistance is an intrinsic feature of this species. L. bulgaricus IDCC 3601 did not produce biogenic amines and did not exhibit hemolytic activity. Phenotypic analysis of enzyme activity and carbohydrate fermentation profiles revealed the metabolic features of L. bulgaricus IDCC 3601. Moreover, no deaths or abnormalities were observed in single-dose oral toxicity tests, suggesting that L. bulgaricus IDCC 3601 has no adverse effect on human health. Finally, L. bulgaricus IDCC 3601 inhibited the growth of potential carbapenem-resistant Enterobacteriaceae. Therefore, our results suggest that L. bulgaricus IDCC 3601 is a safe probiotic strain for human consumption.
RESUMEN
Urinary polycyclic aromatic hydrocarbon (PAH) metabolites are associated with oxidative stress; however, epidemiological studies have not reported the impacts of these urinary PAH metabolites on blood lipid levels. This study investigated the relationship between urinary PAH metabolites, urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and blood lipid profiles. A total of 109 elderly volunteers were recruited with complete datasets for analysis. Blood and morning urine samples were collected in the winter of 2011. The PAH metabolites, creatinine, and 8-OHdG levels in urine samples were analyzed using Gas Chromatography-Mass Spectrometry, spectrophotometry, and an ELISA kit, respectively. The blood lipid profiles were analyzed using an automatic biochemical analyzer. The relationship between lipid profiles and 8-OHdG was assessed using a two-independent sample nonparametric test, categorized by gender, smoking, and alcohol consumption status. After normalizing the concentration values, a general linear regression model was employed to examine the correlations between PAH metabolites, 8-OHdG, and lipid profiles. A mediation model was developed to investigate the mediating effect of 8-OHdG on the relationship between PAH metabolites and lipid profiles. The median of eight PAH metabolite concentrations in urine samples ranged from 1 to 10 µmol/mol creatinine (Cr). Significant differences in lipid profiles were observed across genders. However, no significant differences were found in smoking or alcohol consumption status for both genders. Linear regression analysis revealed that an increase in the logarithmic concentration of 2-hydroxynaphthalene (2-OHNap), 9-hydroxyfluorene (9-OHFlu), 3-hydroxyfluorene (3-OHFlu), 2-hydroxyfluorene (2-OHFlu), 1-hydroxypyrene (1-OHPyr), and 6-hydroxychrysene (6-OHChr) was associated with an increase in urinary 8-OHdG levels, after adjusting for BMI and age. Specifically, 1-hydroxynaphthalene (1-OHNap) and 1-OHPyr correlated negatively with apolipoprotein A1 (Apo A1). Conversely, 1-OHPyr was positively correlated with low-density lipoprotein cholesterol (LDL-C). In addition, b,c-dihydroxyphenanthrene (2-OHBcPhe) was positively associated with apolipoprotein B (Apo B). Notably, 8-OHdG did not exhibit a significant correlation with lipid profiles. The mediating effect of 8-OHdG on the relationship between hydroxylated PAHs and lipid profiles was not statistically significant. However, the indirect effects of hydroxylated PAHs on blood lipids were statistically substantial, specifically for 1-OHNap to Apo A1 (-0.025, 95% CI: -0.041, -0.009), 1-OHPyr to LDL-C (0.107, 95% CI: 0.011, 0.203), and 2-OHBcPhe to Apo B (0.070, 95% CI: 0.005, 0.135). This study suggests that an increase in urinary PAH metabolites may elevate the levels of urinary 8-OHdG and influence blood lipid profiles. However, no direct relationship was found between 8-OHdG and lipid profiles. The mediation analysis indicated that the effects of PAH metabolites on lipid changes may operate through pathways other than oxidative stress.
RESUMEN
This study investigated the occurrence status, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sediments from three typical mangrove areas in Guangxi Province, China. Results showed that the PAH content in the three studied regions ranged from 39.76 ng·g-1 to 164.93 ng·g-1, and the average concentration was 92.87 ng·g-1. The PAHs that were detected were mainly 3-ring and 4-ring. The source of PAHs, as traced by the diagnostic ratio method and principal component analysis, was mainly from combustion. The toxicity risk assessment showed that the content of all PAHs was lower than the Effects Range Low (ERL), and the potential ecological risk was low. The toxicity equivalent (TEQBaP) content ranged from 4.75 ng·g-1 to 19.20 ng·g-1, with an average of 12.08 ng·g-1. Overall, the ecological risk of PAHs in mangrove sediments in Guangxi is considered low.
RESUMEN
Polymyxins was applied to treat ventilator associated pneumonia (VAP) caused by carbapenem-resistant Gram-negative bacteria (CR-GNB) via different administration routes. The potential benefits of aerosolised polymyxins as adjunctive treatment for patients still were contradictory. This review assessed the safety and efficacy of intravenous combined with aerosolised polymyxins versus intravenous polymyxins monotherapy in patients with VAP caused by CR-GNB. Two reviewers independently evaluated and extracted date from Pubmed, Embase, Cochrane library and Web of science. The primary outcome was all-cause mortality and secondary outcomes included clinical cure rate, clinical improvement rate, microbiological eradication and nephrotoxicity. Differences for dichotomous outcomes were expressed as odds ratios (OR) with 95% confidence intervals (CI). Eleven eligible studies were included. The results showed that compared with intravenous polymyxins monotherapy, intravenous plus aerosolised polymyxins therapy significantly reduced all-cause mortality rate (ORâ¯=â¯0.75, 95% CI 0.57 - 0.99, Pâ¯=â¯0.045) and improved clinical improvement rate (ORâ¯=â¯1.62, 95% CI 1.02 - 2.60, Pâ¯=â¯0.043) and microbial eradication rate (ORâ¯=â¯2.07, 95% CI 1.40 - 3.05, Pâ¯=â¯0.000). However, there were no significant difference in terms of clinical cure rate (ORâ¯=â¯1.59, 95% CI 0.96 - 2.63, Pâ¯=â¯0.072) and nephrotoxicity (ORâ¯=â¯1.14, 95% CI 0.80 - 1.63, Pâ¯=â¯0.467) for intravenous plus aerosolised polymyxins therapy. Subgroup analysis revealed that the clinical improvement rate was improved significantly in case-control studies. Aerosolised polymyxins maybe a useful adjunct to intravenous polymyxins for CR-GNB VAP patients.
RESUMEN
A new method was proposed to address fault diagnosis by applying the digital twin (DT) high-fidelity behavior and the deep learning (DL) data mining capabilities. Subsequently, the proposed fault distribution GAN (FDGAN) was built to map virtual and physical entities for the data from the established test platform. Finally, the MobileViG was employed to validate the model and diagnose faults. The accuracy of the proposed method with training samples of 600 and 800 were 88.4% and 99.5%, respectively. These accuracies surpass those of other methods based on CycleGAN (98.86%), CACGAN (94.92%), ACGAN (86.45%), ML1D-GAN (82.33%), and transfer learning (99.38%). Therefore, with the integration of global connectivity, an innovative network structure, and training methods, FDGAN can effectively address challenges such as network degradation, limited feature extraction in small windows, and insufficient model robustness.
RESUMEN
The effects of chemical components of ambient fine particulate matter (PM2.5) on human early maternal-fetal interface are unknown. We estimated the associations of PM2.5 and component exposures with placental villi 8-hydroxy-2'-deoxyguanosine (8-OHdG) in 142 normal early pregnancy (NEP) and 142 early pregnancy loss (EPL) from December 2017 to December 2022. We used datasets accessed from the Tracking Air Pollution in China platform to estimate maternal daily PM2.5 and component exposures. Effect of average PM2.5 and component exposures during the post-conception period (i.e., from ovulation to villi collection) on the concentration of villi 8-OHdG were analyzed using multivariable linear regression models. Distributed lag and cumulative effects of PM2.5 and component exposures during the periovulatory period and within ten days before villi collection on villi 8-OHdG were analyzed using distributed lag non-linear models combined with multivariable linear regression models. Per interquartile range increase in average PM2.5, black carbon (BC), and organic matter (OM) exposures during the post-conception period increased villi 8-OHdG in all subjects (ß = 34.48% [95% CI: 9.33%, 65.42%], ß = 35.73% [95% CI: 9.08%, 68.89%], and ß = 54.71% [95% CI: 21.56%, 96.91%], respectively), and in EPL (ß = 63.37% [95% CI: 16.00%, 130.10%], ß = 47.43% [95% CI: 4.30%, 108.39%], and ß = 72.32% [95% CI: 18.20%, 151.21%], respectively), but not in NEP. Specific weekly lag effects of PM2.5, BC, and OM exposures during the periovulatory period increased villi 8-OHdG in all subjects. Ten-day cumulative and lag effects of PM2.5, BC, and OM increased villi 8-OHdG in all subjects and EPL, but not in NEP; and the effects of OM were robust after adjusting for BC, ammonium, nitrate, or sulfate in two-pollutant models. In conclusion, placental oxidative DNA damage in early pregnancy was associated with maternal exposure to PM2.5, especially its chemical components BC and OM.
RESUMEN
Triterpene skeletons, catalyzing by 2,3-oxidosqualene cyclases (OSCs), are essential for synthesis of steroids and triterpenoids. In japonica rice cultivars Zhonghua11, a total of 12 OsOSCs have been found. While the catalytic functions of OsOSC1, 3, 4, 9, and 10 remain unclear, the functions of the other OsOSCs have been well studied. In this study, we conducted a comprehensive analysis of 12 OSC genes within genus Oryza with the aid of 63 genomes from cultivated and wild rice. We found that OSC genes are relatively conserved within genus Oryza with a few exceptions. Collinearity analysis further suggested that, throughout the evolutionary history of genus Oryza, the OSC genes have not undergone significant rearrangements or losses. Further functional analysis of 5 uncharacterized OSCs revealed that OsOSC10 was a friedelin synthase, which affected the development of rice grains. Additionally, the reconstructed ancestral sequences of Oryza OSC3 and Oryza OSC9 had lupeol synthase and poaceatapetol synthase activity, respectively. The discovery of friedelin synthase in rice unlocks a new catalytic path and biological function of OsOSC10. The pan-genome analysis of OSCs within genus Oryza gives insights into the evolutionary trajectory and products diversity of Oryza OSCs.
RESUMEN
The optically tuneable nature of hybrid organic/inorganic heterostructures tailored by interfacing photochromic molecules with 2D semiconductors (2DSs) can be exploited to endow multi-responsiveness to the exceptional physical properties of 2DSs. In this study, a spiropyran-molybdenum disulfide (MoS2) light-switchable bi-functional field-effect transistor is realized. The spiropyran-merocyanine reversible photo-isomerization has been employed to remotely control both the electron transport and wettability of the hybrid structure. This manipulation is instrumental for tuning the sensitivity in humidity sensing. The hybrid organic/inorganic heterostructure is subjected to humidity testing, demonstrating its ability to accurately monitor relative humidity (RH) across a range of 10%-75%. The electrical output shows good sensitivity of 1.0% · (%) RH-1. The light-controlled modulation of the sensitivity in chemical sensors can significantly improve their selectivity, versatility, and overall performance in chemical sensing.
RESUMEN
Metal exposure has been reported to be associated with metabolic syndrome (MetS), however, the evidence remains inconclusive, particularly in elderly individuals. From May to July 2016, serum levels of 16 metals were measured using inductively coupled plasma mass spectrometry (ICP-MS) in 852 elderly individuals (≥65 years) residing in Wuhan, China. Biological detection and disease recognition were based on individual surveys conducted during health check-ups. Spearman's rank correlation analysis was performed to identify the correlation among serum metals. The data were Ln-transformed to fit a normal distribution for further analyses. Linear and logistic regression were applied to explore the associations between metals and diseases. Restricted cubic spline (RCS) analysis was utilized to examine dose-response relationships. The Weighted Quantile Sum (WQS) score was applied to determine the empirical weights of each heavy metal in the context of their combined effect on metabolic diseases. The prevalence of MetS, hypertension, diabetes, and hyperlipidemia were 46.36â¯%, 68.90â¯%, 24.65â¯%, and 21.60â¯%, respectively. Serum metal mixture was positively associated with the prevalence of MetS (OR = 1.92, 95â¯% CI: 1.30-2.82), hypertension (OR = 1.50, 95â¯% CI: 1.01-2.23), and diabetes (OR = 2.18, 95â¯% CI: 1.48-3.22). In single metal models, we found that serum zinc levels were associated with an increased risk of MetS, while rubidium had a protective effect against MetS. Interestingly, different metals had distinct effects on specific diseases in this study: lithium and barium were more likely to influence blood pressure, while selenium had a more significant effect on blood glucose. Lipids were more susceptible to the effects of zinc, selenium, and strontium. Platelet count (PLT) and lymphocyte count (LYM) mediated the association between selenium exposure and hyperlipidemia, while neutrophil count (NEU) mediated the relationship between serum rubidium exposure and MetS. Our findings offer valuable etiological insights into the relationship between serum heavy metals and the prevalence of MetS, suggesting that peripheral blood cells may play a mediating role in this association.
Asunto(s)
Síndrome Metabólico , Humanos , Síndrome Metabólico/epidemiología , Síndrome Metabólico/sangre , Síndrome Metabólico/inducido químicamente , Anciano , China/epidemiología , Masculino , Femenino , Metales Pesados/sangre , Prevalencia , Contaminantes Ambientales/sangre , Hipertensión/epidemiología , Hipertensión/sangre , Hipertensión/inducido químicamente , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/efectos adversos , Metales/sangre , Anciano de 80 o más Años , Diabetes Mellitus/epidemiología , Diabetes Mellitus/sangre , Diabetes Mellitus/inducido químicamenteRESUMEN
Metformin is the most commonly prescribed medication for treating type 2 diabetes (T2D). It is known that metformin can alter the gut microbiome, which influences the effectiveness of metformin treatment. We posited that if the gut microbiome, a reservoir of the resistome, is altered, then the resistome should change as well. To test this hypothesis, we reanalyzed microbiome data generated by Wu et al. (Nat Med 23(7):850-858, 2017), identifying antibiotic resistance genes (ARGs) and bacterial species. Through read-based analysis, we observed that the abundance of ARGs indeed changed in many samples treated with metformin. Moreover, the altered pattern was sufficiently heterogeneous across individual samples to allow subcategorization. We also found a strong correlation between the abundance of multidrug-resistant ARGs (MDR-ARGs) and the presence of E. coli. The contig-based analysis led to the same conclusion: an increase in MDR-ARGs due to metformin was associated with an increase in E. coli. In relation to this, we were able to confirm that the majority of MDR-ARGs are likely to originate from E. coli. These results suggest that metformin may have the potential side effect of increasing E. coli carrying ARGs, particularly MDR-ARGs, which could be a concern in T2D therapy that relies on metformin.
Asunto(s)
Diabetes Mellitus Tipo 2 , Escherichia coli , Microbioma Gastrointestinal , Metformina , Metformina/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Humanos , Hipoglucemiantes/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Antibacterianos/farmacologíaRESUMEN
Thallium, a highly toxic pollutant, shows greater toxicity to human than other common heavy metals such as mercury, lead, cadmium and its effective removal from wastewater gains great attention. The main restriction for the Tl+ removal is the interference of a high concentration of co-existing ions in wastewater. Therefore, the goal of the current work was to synthesis adsorbent with high selectivity for the Tl+ removal. Herein, the pore size sieving strategy was proposed and Prussian blue-impregnated biochar (BC@PB) particles was synthesized. More than 95% Tl+ can be removed even the concentrations of the coexistence ions (Na+, Cd2+, and Zn2+) 1,000 higher than the initial concentration of Tl+ (500 µg/L). BC@PB also showed large adsorption capacity (9365 µg/g) and more than 99% Tl+ (initial concentration, 500 µg/L) were removed in just 1 min. The BC@PB had excellent and stable Tl+ removal ability (> 99%) over a range of pH from 3 to 9, which covered the pH range of common thallium-containing wastewater. The density functional theory (DFT) calculation confirmed that not only hydrated volume but also the hydration free energy of ions, which governed the energy barrier for ions entering into narrow channels of BC@PB, played essential roles on the selectivity removal of Tl+. Overall, due to its high selectivity, high adsorption capacity and easy preparation process, the synthesized BC@PB particles based on the pore sizing sieving strategy, can be a promising candidate for the removal of thallium from wastewater.
RESUMEN
Air pollution, particularly fine particulate matter (PM2.5) with <2.5 µm in diameter, is a major public health concern. Studies have consistently linked PM2.5 exposure to a heightened risk of cardiovascular diseases (CVDs) such as ischemic heart disease (IHD), heart failure (HF), and cardiac arrhythmias. Notably, individuals with pre-existing age-related cardiometabolic conditions appear more susceptible. However, the specific impact of PM2.5 on CVDs susceptibility in older adults remains unclear. Therefore, this review addresses this gap by discussing the factors that make the elderly more vulnerable to PM2.5-induced CVDs. Accordingly, we focused on physiological aging, increased susceptibility, cardiometabolic risk factors, CVDs, and biological mechanisms. This review concludes by examining potential interventions to reduce exposure and the adverse health effects of PM2.5 in the elderly population. The latter includes dietary modifications, medications, and exploration of the potential benefits of supplements. By comprehensively analyzing these factors, this review aims to provide a deeper understanding of the detrimental effects of PM2.5 on cardiovascular health in older adults. This knowledge can inform future research and guide strategies to protect vulnerable populations from the adverse effects of air pollution.