Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fluids Barriers CNS ; 21(1): 21, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424598

RESUMEN

BACKGROUND: The choroid plexus functions as the blood-cerebrospinal fluid (CSF) barrier, plays an important role in CSF production and circulation, and has gained increased attention in light of the recent elucidation of CSF circulation dysfunction in neurodegenerative conditions. However, methods for routinely quantifying choroid plexus volume are suboptimal and require technical improvements and validation. Here, we propose three deep learning models that can segment the choroid plexus from commonly-acquired anatomical MRI data and report performance metrics and changes across the adult lifespan. METHODS: Fully convolutional neural networks were trained from 3D T1-weighted, 3D T2-weighted, and 2D T2-weighted FLAIR MRI using gold-standard manual segmentations in control and neurodegenerative participants across the lifespan (n = 50; age = 21-85 years). Dice coefficients, 95% Hausdorff distances, and area-under-curve (AUCs) were calculated for each model and compared to segmentations from FreeSurfer using two-tailed Wilcoxon tests (significance criteria: p < 0.05 after false discovery rate multiple comparisons correction). Metrics were regressed against lateral ventricular volume using generalized linear models to assess model performance for varying levels of atrophy. Finally, models were applied to an expanded cohort of adult controls (n = 98; age = 21-89 years) to provide an exemplar of choroid plexus volumetry values across the lifespan. RESULTS: Deep learning results yielded Dice coefficient = 0.72, Hausdorff distance = 1.97 mm, AUC = 0.87 for T1-weighted MRI, Dice coefficient = 0.72, Hausdorff distance = 2.22 mm, AUC = 0.87 for T2-weighted MRI, and Dice coefficient = 0.74, Hausdorff distance = 1.69 mm, AUC = 0.87 for T2-weighted FLAIR MRI; values did not differ significantly between MRI sequences and were statistically improved compared to current commercially-available algorithms (p < 0.001). The intraclass coefficients were 0.95, 0.95, and 0.96 between T1-weighted and T2-weighted FLAIR, T1-weighted and T2-weighted, and T2-weighted and T2-weighted FLAIR models, respectively. Mean lateral ventricle choroid plexus volume across all participants was 3.20 ± 1.4 cm3; a significant, positive relationship (R2 = 0.54-0.60) was observed between participant age and choroid plexus volume for all MRI sequences (p < 0.001). CONCLUSIONS: Findings support comparable performance in choroid plexus delineation between standard, clinically available, non-contrasted anatomical MRI sequences. The software embedding the evaluated models is freely available online and should provide a useful tool for the growing number of studies that desire to quantitatively evaluate choroid plexus structure and function ( https://github.com/hettk/chp_seg ).


Asunto(s)
Aprendizaje Profundo , Adulto , Humanos , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Procesamiento de Imagen Asistido por Computador/métodos , Longevidad , Plexo Coroideo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...