Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Clin Oncol ; 42(10): 1102-1109, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194613

RESUMEN

PURPOSE: The Normal Risk Ovarian Screening Study (NROSS) tested a two-stage screening strategy in postmenopausal women at conventional hereditary risk where significantly rising cancer antigen (CA)-125 prompted transvaginal sonography (TVS) and abnormal TVS prompted surgery to detect ovarian cancer. METHODS: A total of 7,856 healthy postmenopausal women were screened annually for a total of 50,596 woman-years in a single-arm study (ClinicalTrials.gov identifier: NCT00539162). Serum CA125 was analyzed with the Risk of Ovarian Cancer Algorithm (ROCA) each year. If risk was unchanged and <1:2,000, women returned in a year. If risk increased above 1:500, TVS was undertaken immediately, and if risk was intermediate, CA125 was repeated in 3 months with a further increase in risk above 1:500 prompting referral for TVS. An average of 2% of participants were referred to TVS annually. RESULTS: Thirty-four patients were referred for operations detecting 15 ovarian cancers and two borderline tumors with 12 in early stage (I-II). In addition, seven endometrial cancers were detected with six in stage I. As four ovarian cancers and two borderline tumors were diagnosed with a normal ROCA, the sensitivity for detecting ovarian and borderline cancer was 74% (17 of 23), and 70% of ROCA-detected cases (12 of 17) were in stage I-II. NROSS screening reduced late-stage (III-IV) disease by 34% compared with UKCTOCS controls and by 30% compared with US SEER values. The positive predictive value (PPV) was 50% (17 of 34) for detecting ovarian cancer and 74% (25 of 34) for any cancer, far exceeding the minimum acceptable study end point of 10% PPV. CONCLUSION: While the NROSS trial was not powered to detect reduced mortality, the high specificity, PPV, and marked stage shift support further development of this strategy.


Asunto(s)
Neoplasias Endometriales , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico por imagen , Valor Predictivo de las Pruebas , Tamizaje Masivo , Ultrasonografía , Antígeno Ca-125
2.
J Ovarian Res ; 15(1): 70, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35668443

RESUMEN

BACKGROUND: Mitochondrial dynamics (e.g. fission/fusion) play an important role in controlling chemoresistance in representative gynecologic malignancies, ovarian and cervical cancer. Processing the long form of Optic atrophy (L-Opa)1 is a distinctive character of mitochondrial fragmentation, associated with chemosensitivity. Here, we examined the role of prohibitin (Phb)1 in increasing L-Opa1 processing via the regulating mitochondrial protease, Oma1 and its direct interaction with p-p53 (ser15) and pro-apoptotic Bcl-2 antagonist/killer (Bak) 1 in the signaling axis and if this phenomenon is associated with prognosis of patients. METHODS: We compared Cisplatin (CDDP)-induced response of mitochondrial dynamics, molecular interaction among p-p53 (ser15)-Phb1-Bak, and chemoresponsiveness in paired chemosensitive and chemoresistant gynecologic cancer cells (ovarian and cervical cancer cell lines) using western blot, immunoprecipitation, sea horse, and immunofluorescence. Translational strategy with proximity ligation assessment in phb1-p-p53 (ser15) in human ovarian tumor sections further confirmed in vitro finding, associated with clinical outcome. RESULTS: We report that: (1) Knock-down of Phb1 prevents Cisplatin (cis-diamine-dichloroplatinum; CDDP) -induced changes in mitochondrial fragmentation and Oma1 mediated cleavage, and Opa1 processing; (2) In response to CDDP, Phb1 facilitates the p-p53 (ser15)-Phb1-Bak interaction in mitochondria in chemosensitive gynecologic cancer cells but not in chemoresistant cells; (3) Akt overexpression results in suppressed p-p53(Ser15)-Phb1 interaction and dysregulated mitochondrial dynamics, and (4) Consistent with in vitro findings, proximity ligation assessment (PLA) in human ovarian tumor sections demonstrated that p-p53(ser15)-Phb1-Bak interaction in mitochondria is associated with better chemoresponsiveness and clinical outcome of patients. Determining the molecular mechanisms by which Phb1 facilitates mitochondrial fragmentation and interacts with p53 may advance the current understanding of chemoresistance and pathogenesis of gynecologic cancer. CONCLUSION: Determining the key molecular mechanisms by which Phb1 facilitates the formation of p-p53 (ser15)-Bak-Phb1 and its involvement in the regulation of mitochondrial dynamics and apoptosis may ultimately contribute to the current understanding of molecular and cellular basis of chemoresistance in this gynecologic cancer.


Asunto(s)
Antineoplásicos , Neoplasias de los Genitales Femeninos , Neoplasias Ováricas , Neoplasias del Cuello Uterino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Dinámicas Mitocondriales , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Prohibitinas , Proteína p53 Supresora de Tumor/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-34676377

RESUMEN

A recent ovarian cancer screening trial found no reduction in mortality, despite increased detection of early stage disease. Here, we discuss these findings and examine next steps to develop more effective approaches for the early detection of ovarian cancer.

4.
Cancers (Basel) ; 13(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34298618

RESUMEN

In epithelial ovarian cancer (EOC), carboplatin/cisplatin-induced chemoresistance is a major hurdle to successful treatment. Aerobic glycolysis is a common characteristic of cancer. However, the role of glycolytic metabolism in chemoresistance and its impact on clinical outcomes in EOC are not clear. Here, we show a functional interaction between the key glycolytic enzyme hexokinase II (HKII) and activated P-p53 (Ser15) in the regulation of bioenergetics and chemosensitivity. Using translational approaches with proximity ligation assessment in cancer cells and human EOC tumor sections, we showed that nuclear HKII-P-p53 (Ser15) interaction is increased after chemotherapy, and functions as a determinant of chemoresponsiveness as a prognostic biomarker. We also demonstrated that p53 is required for the intracellular nuclear HKII trafficking in the control of glycolysis in EOC, associated with chemosensitivity. Mechanistically, cisplatin-induced P-p53 (Ser15) recruits HKII and apoptosis-inducing factor (AIF) in chemosensitive EOC cells, enabling their translocation from the mitochondria to the nucleus, eliciting AIF-induced apoptosis. Conversely, in p53-defective chemoresistant EOC cells, HKII and AIF are strongly bound in the mitochondria and, therefore, apoptosis is suppressed. Collectively, our findings implicate nuclear HKII-P-p53(Ser15) interaction in chemosensitivity and could provide an effective clinical strategy as a promising biomarker during platinum-based therapy.

5.
Cancer Epidemiol Biomarkers Prev ; 29(12): 2504-2512, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33051337

RESUMEN

Early detection of ovarian cancer remains an important unmet medical need. Effective screening could reduce mortality by 10%-30%. Used individually, neither serum CA125 nor transvaginal sonography (TVS) is sufficiently sensitive or specific. Two-stage strategies have proven more effective, where a significant rise above a woman's baseline CA125 prompts TVS and an abnormal sonogram prompts surgery. Two major screening trials have documented that this strategy has adequate specificity, but sensitivity for early-stage (I-II) disease must improve to have a greater impact on mortality. To improve the first stage, different panels of protein biomarkers have detected cases missed by CA125. Autoantibodies against TP53 have detected 20% of early-stage ovarian cancers 8 months before elevation of CA125 and 22 months before clinical diagnosis. Panels of autoantibodies and antigen-autoantibody complexes are being evaluated with the goal of detecting >90% of early-stage ovarian cancers, alone or in combination with CA125, while maintaining 98% specificity in control subjects. Other biomarkers, including micro-RNAs, ctDNA, methylated DNA, and combinations of ctDNA alterations, are being tested to provide an optimal first-stage test. New technologies are also being developed with greater sensitivity than TVS to image small volumes of tumor.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."


Asunto(s)
Biomarcadores de Tumor/metabolismo , Antígeno Ca-125/sangre , Metilación de ADN/genética , Detección Precoz del Cáncer/métodos , Neoplasias Ováricas/diagnóstico , Ultrasonografía/métodos , Anciano , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/diagnóstico por imagen
6.
Cancer Cell ; 37(4): 599-617.e7, 2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32243837

RESUMEN

Epigenetic modifiers frequently harbor loss-of-function mutations in lung cancer, but their tumor-suppressive roles are poorly characterized. Histone methyltransferase KMT2D (a COMPASS-like enzyme, also called MLL4) is among the most highly inactivated epigenetic modifiers in lung cancer. Here, we show that lung-specific loss of Kmt2d promotes lung tumorigenesis in mice and upregulates pro-tumorigenic programs, including glycolysis. Pharmacological inhibition of glycolysis preferentially impedes tumorigenicity of human lung cancer cells bearing KMT2D-inactivating mutations. Mechanistically, Kmt2d loss widely impairs epigenomic signals for super-enhancers/enhancers, including the super-enhancer for the circadian rhythm repressor Per2. Loss of Kmt2d decreases expression of PER2, which regulates multiple glycolytic genes. These findings indicate that KMT2D is a lung tumor suppressor and that KMT2D deficiency confers a therapeutic vulnerability to glycolytic inhibitors.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Proteínas de Unión al ADN/antagonistas & inhibidores , Desoxiglucosa/farmacología , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Glucólisis , N-Metiltransferasa de Histona-Lisina/fisiología , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Proteínas de Neoplasias/antagonistas & inhibidores , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/metabolismo , Animales , Antimetabolitos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Ratones Desnudos , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Pronóstico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Mol Carcinog ; 58(11): 2161-2174, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31486135

RESUMEN

Metabolic reprogramming (including the Warburg effect) is a hallmark of cancer, yet the association between the altered metabolism and chemoresistance remains elusive. Hexokinase II (HKII) is a key metabolic enzyme and is upregulated in multiple cancers. In this study, we examined the impact of targeting metabolism via silencing of HKII on chemoresistance in ovarian cancer (OVCA). In addition, the regulatory molecular mechanism of tumor metabolism was examined using gain- and loss-of-function approaches in epithelial OVCA cell lines of various histological subtypes. We demonstrated that cisplatin (CDDP)-induced p53-mediated HKII downregulation is a determinant of chemosensitivity in OVCA. Silencing of HKII sensitized chemoresistant OVCA cells to apoptosis in a p53-dependent manner. As a negative regulator, p53 suppressed HKII transcription by promoter binding and decreased glycolysis. Pyruvate dehydrogenase kinase-1 (PDK1) is a key regulator of cell proliferation involved in Akt signaling axis. Our Gene Expression Profiling Interactive Analysis (GEPIA) and molecular studies also revealed that PDK1, an upstream activator strongly correlates with HKII expression and regulates its metabolic activity. Finally, we demonstrated that the clinically approved drug metformin sensitizes chemoresistant OVCA cells to CDDP via PDK1-HKII pathway. Collectively, our data implicate that p53--PDK1-HKII axis is a central regulatory component of metabolism conferring chemoresistance in OVCA.


Asunto(s)
Carcinoma Epitelial de Ovario/tratamiento farmacológico , Hexoquinasa/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Proteína p53 Supresora de Tumor/genética , Apoptosis/efectos de los fármacos , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Proliferación Celular/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hexoquinasa/antagonistas & inhibidores , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/efectos de los fármacos
8.
Cancer Cell Int ; 19: 188, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31360122

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths primarily due to chemoresistance. Somatic mutation of TP53 (36%) and epidermal growth factor receptor (EGFR; > 30%) are major contributors to cisplatin (CDDP) resistance. Substantial evidence suggests the elevated levels of reactive oxygen species (ROS) is a key determinant in cancer. The elevated ROS can affect the cellular responses to chemotherapeutic treatments. Although the role of EGFR in PI3K/Akt signaling cascade in NSCLC is extensively studied, the molecular link between EGFR and p53 and the role of ROS in pathogenesis of NSCLC are limitedly addressed. In this study, we investigated the role of p53 in regulation of ROS production and EGFR signaling, and the chemosensitivity of NSCLC. METHODS: In multiple NSCLC cell lines with varied p53 and EGFR status, we compared and examined the protein contents involved in EGFR-Akt-P53 signaling loop (EGFR, P-EGFR, Akt, P-Akt, p53, P-p53) by Western blot. Apoptosis was determined based on nuclear morphological assessment using Hoechst 33258 staining. Cellular ROS levels were measured by dichlorofluorescin diacetate (DCFDA) staining followed by flow cytometry analysis. RESULTS: We have demonstrated for the first time that activation of p53 sensitizes chemoresistant NSCLC cells to CDDP by down-regulating EGFR signaling pathway and promoting intracellular ROS production. Likewise, blocking EGFR/PI3K/AKT signaling with PI3K inhibitor elicited a similar response. Our findings suggest that CDDP-induced apoptosis in chemosensitive NSCLC cells involves p53 activation, leading to suppressed EGFR signaling and ROS production. In contrast, in chemoresistant NSCLC, activated Akt promotes EGFR signaling by the positive feedback loop and suppresses CDDP-induced ROS production and apoptosis. CONCLUSION: Collectively, our study reveals that the interaction of the p53 and Akt feedback loops determine the fate of NSCLC cells and their CDDP sensitivity.

9.
Cancers (Basel) ; 11(6)2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31212816

RESUMEN

Metabolic reprogramming is a common phenomenon in cancers. Thus, glycolytic enzymes could be exploited to selectively target cancer cells in cancer therapy. Hexokinase 2 (HK2) converts glucose to glucose-6-phosphate, the first committed step in glucose metabolism. Here, we demonstrated that HK2 was overexpressed in ovarian cancer and displayed significantly higher expression in ascites and metastatic foci. HK2 expression was significantly associated with advanced stage and high-grade cancers, and was an independent prognostic factor. Functionally, knockdown of HK2 in ovarian cancer cell lines and ascites-derived tumor cells hindered lactate production, cell migration and invasion, and cell stemness properties, along with reduced FAK/ERK1/2 activation and metastasis- and stemness-related genes. 2-DG, a glycolysis inhibitor, retarded cell migration and invasion and reduced stemness properties. Inversely, overexpression of HK2 promoted cell migration and invasion through the FAK/ERK1/2/MMP9 pathway, and enhanced stemness properties via the FAK/ERK1/2/NANOG/SOX9 cascade. HK2 abrogation impeded in vivo tumor growth and dissemination. Notably, ovarian cancer-associated fibroblast-derived IL-6 contributed to its up-regulation. In conclusion, HK2, which is regulated by the tumor microenvironment, controls lactate production and contributes to ovarian cancer metastasis and stemness regulation via FAK/ERK1/2 signaling pathway-mediated MMP9/NANOG/SOX9 expression. HK2 could be a potential prognostic marker and therapeutic target for ovarian cancer.

10.
Genes Cancer ; 9(5-6): 155-175, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30603053

RESUMEN

Elevated metabolism is a key hallmark of multiple cancers, serving to fulfill high anabolic demands. Ovarian cancer (OVCA) is the fifth leading cause of cancer deaths in women with a high mortality rate (45%). Chemoresistance is a major hurdle for OVCA treatment. Although substantial evidence suggests that metabolic reprogramming contributes to anti-apoptosis and the metastasis of multiple cancers, the link between tumor metabolism and chemoresistance in OVCA remains unknown. While clinical trials targeting metabolic reprogramming alone have been met with limited success, the synergistic effect of inhibiting tumor-specific metabolism with traditional chemotherapy warrants further examination, particularly in OVCA. This review summarizes the role of key glycolytic enzymes and other metabolic synthesis pathways in the progression of cancer and chemoresistance in OVCA. Within this context, mitochondrial dynamics (fission, fusion and cristae structure) are addressed regarding their roles in controlling metabolism and apoptosis, closely associated with chemosensitivity. The roles of multiple key oncogenes (Akt, HIF-1α) and tumor suppressors (p53, PTEN) in metabolic regulation are also described. Next, this review summarizes recent research of metabolism and future direction. Finally, we examine clinical drugs and inhibitors to target glycolytic metabolism, as well as the rationale for such strategies as potential therapeutics to overcome chemoresistant OVCA.

11.
Endocrinology ; 158(4): 993-1004, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28324045

RESUMEN

The destiny of the ovarian follicle (growth or atresia) is tightly regulated by the actions and interactions of endocrine, paracrine, and autocrine factors. Although androgens are known to be important in the regulation of folliculogenesis, whether they facilitate or suppress follicular growth has been controversial, and the mechanisms involved are not fully understood. Moreover, the role and regulation of androgen receptor (AR) in mediating androgen signaling during follicular development is not clear. Here, we report that the active androgen dihydrotestosterone upregulates the expression of AR and its E3 ligase ring finger protein 6 (RNF6), increasing site-specific AR polyubiquitination and AR transcriptional activity for soluble Kit ligand (sKit-L) expression in preantral follicle growth. RNF6 silencing suppressed dihydrotestosterone-induced AR ubiquitination (lysine residue 63) and proliferation and suppressed apoptosis in preantral granulosa cells, with these responses being overcome by the presence of exogenous sKit-L. Taken together, our findings support the notion that RNF6 plays an important role in androgen-induced, follicle-stage-dependent follicle growth and that it acts by facilitating AR-mediated granulosa cell sKit-L expression and proliferation. Our findings offer insights into the regulatory mechanism of androgen action in ovarian follicular growth.


Asunto(s)
Andrógenos/farmacología , Proliferación Celular/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Dihidrotestosterona/farmacología , Células de la Granulosa/metabolismo , Folículo Ovárico/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Unión al ADN/genética , Femenino , Células de la Granulosa/citología , Células de la Granulosa/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/crecimiento & desarrollo , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley
12.
J Immunol ; 193(3): 1333-43, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24973453

RESUMEN

Macrophages pre-exposed to a sublethal dose of anthrax lethal toxin (LeTx) are refractory to subsequent high cytolytic doses of LeTx, termed toxin-induced resistance (TIR). A small population of TIR cells (2-4%) retains TIR characteristics for up to 5-6 wk. Through studying these long-term TIR cells, we found that a high level of histone deacetylase (HDAC)8 expression was crucial for TIR. Knocking down or inhibition of HDAC8 by small interfering RNAs or the HDAC8-specific inhibitor PCI-34051, respectively, induced expression of the mitochondrial death genes Bcl2 adenovirus E1B 19 kDa-interacting protein 3 (BNIP3), BNIP3-like and metastatic lymph node 64, and resensitized TIR cells to LeTx. Among multiple histone acetylations, histone H3 lysine 27 (H3K27) acetylation was most significantly decreased in TIR cells in an HDAC8-dependent manner, and the association of H3K27 acetylation with the genomic regions of BNIP3 and metastatic lymph node 64, where HDAC8 was recruited to, was diminished in TIR cells. Furthermore, overexpression of HDAC8 or knocking down the histone acetyltransferase CREB-binding protein/p300, known to target H3K27, rendered wild-type cells resistant to LeTx. As in RAW264.7 cells, primary bone marrow-derived macrophages exposed to a sublethal dose of LeTx were resistant to LeTx in an HDAC8-dependent manner. Collectively, this study demonstrates that epigenetic reprogramming mediated by HDAC8 plays a key role in determining the susceptibility of LeTx-induced pyroptosis in macrophages.


Asunto(s)
Antígenos Bacterianos/toxicidad , Apoptosis/inmunología , Toxinas Bacterianas/toxicidad , Epigenómica/métodos , Histona Desacetilasas/genética , Macrófagos/inmunología , Proteínas Represoras/genética , Animales , Apoptosis/efectos de los fármacos , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Línea Celular , Pruebas Inmunológicas de Citotoxicidad/métodos , Citotoxicidad Inmunológica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Ratones de la Cepa 129 , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/inmunología , Panobinostat , Proteínas Represoras/antagonistas & inhibidores
13.
Mol Cell Biol ; 32(23): 4846-60, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23028046

RESUMEN

Cellular adaptation to different stresses related to survival and function has been demonstrated in several cell types. Anthrax lethal toxin (LeTx) induces rapid cell death, termed "pyroptosis," by activating NLRP1b/caspase-1 in murine macrophages. We and others (S. D. Ha et al., J. Biol. Chem. 282:26275-26283, 2007; I. I. Salles et al., Proc. Natl. Acad. Sci. U. S. A. 100:12426 -12431, 2003) have shown that RAW264.7 cells preexposed to sublethal doses of LeTx become resistant to subsequent high cytolytic doses of LeTx, termed toxin-induced resistance (TIR). To date, the cellular mechanisms of pyroptosis and TIR are largely unknown. We found that LeTx caused NLRP1b/caspase-1-dependent mitochondrial dysfunction, including hyperpolarization and generation of reactive oxygen species, which was distinct from that induced by stimuli such as NLRP3-activating ATP. In TIR cells, these mitochondrial events were not detected, although caspase-1 was activated, in response to LeTx. We identified that downregulation of the late endosomal cholesterol-transferring protein MLN64 in TIR cells was involved in TIR. The downregulation of MLN64 in TIR cells was at least in part due to DNA methyltransferase 1-mediated DNA methylation. In wild-type RAW264.7 cells and primary bone marrow-derived macrophages, LeTx caused NLRP1b/caspase-1-dependent mitochondrial translocation of MLN64, resulting in cholesterol enrichment, membrane hyperpolarization, reactive oxygen species (ROS) generation, and depletion of free glutathione (GSH). This study demonstrates for the first time that MLN64 plays a key role in LeTx/caspase-1-induced mitochondrial dysfunction.


Asunto(s)
Carbunco/inmunología , Antígenos Bacterianos/inmunología , Bacillus anthracis/inmunología , Toxinas Bacterianas/inmunología , Colesterol/inmunología , Macrófagos/virología , Mitocondrias/virología , Fosfoproteínas/genética , Animales , Carbunco/genética , Carbunco/virología , Caspasa 1/inmunología , Muerte Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Metilación de ADN , Regulación hacia Abajo , Glutatión/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/inmunología , Fosfoproteínas/análisis , Fosfoproteínas/inmunología , Especies Reactivas de Oxígeno/inmunología , beta-Ciclodextrinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA