Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Ophthalmol ; 23(1): 59, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765328

RESUMEN

BACKGROUND: Optimal sizing for phakic intraocular lens (EVO-ICL with KS-AquaPort) implantation plays an important role in preventing postoperative complications. We aimed to formulate optimal lens sizing using ocular biometric parameters measured with a Heidelberg anterior segment optical coherence tomography (AS-OCT) device. METHODS: We retrospectively analyzed 892 eyes of 471 healthy subjects treated with an intraocular collamer lens (ICL) and assigned them to either the development (80%) or validation (20%) set. We built vault prediction models using the development set via classic linear regression methods as well as partial least squares and least absolute shrinkage and selection operator (LASSO) regression techniques. We evaluated prediction abilities based on the Bayesian information criterion (BIC) to select the best prediction model. The performance was measured using Pearson's correlation coefficient and the mean squared error (MAE) between the achieved and predicted results. RESULTS: Measurements of aqueous depth (AQD), anterior chamber volume, anterior chamber angle (ACA) distance, spur-to-spur distance, crystalline lens thickness (LT), and white-to-white distance from ANTERION were highly associated with the ICL vault. The LASSO model using the AQD, ACA distance, and LT showed the best BIC results for postoperative ICL vault prediction. In the validation dataset, the LASSO model showed the strongest correlation (r = 0.582, P < 0.001) and the lowest MAE (104.7 µm). CONCLUSION: This is the first study to develop a postoperative ICL vault prediction and lens-sizing model based on the ANTERION. As the measurements from ANTERION and other AS-OCT devices are not interchangeable, ANTERION may be used for optimal ICL sizing using our formula. Because our model was developed based on the East Asian population, further studies are needed to explore the role of this prediction model in different populations.


Asunto(s)
Miopía , Lentes Intraoculares Fáquicas , Humanos , Tomografía de Coherencia Óptica/métodos , Estudios Retrospectivos , Implantación de Lentes Intraoculares/métodos , Teorema de Bayes , Miopía/cirugía , Cámara Anterior/diagnóstico por imagen
2.
Transl Vis Sci Technol ; 12(1): 10, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36607625

RESUMEN

Purpose: The anterior chamber angle (ACA) is a critical factor in posterior chamber phakic intraocular lens (EVO Implantable Collamer Lens [ICL]) implantation. Herein, we predicted postoperative ACAs to select the optimal ICL size to reduce narrow ACA-related complications. Methods: Regression models were constructed using pre-operative anterior segment optical coherence tomography metrics to predict postoperative ACAs, including trabecular-iris angles (TIAs) and scleral-spur angles (SSAs) at 500 µm and 750 µm from the scleral spur (TIA500, TIA750, SSA500, and SSA750). Data from three expert surgeons were assigned to the development (N = 430 eyes) and internal validation (N = 108 eyes) datasets. Additionally, data from a novice surgeon (N = 42 eyes) were used for external validation. Results: Postoperative ACAs were highly predictable using the machine-learning (ML) technique (extreme gradient boosting regression [XGBoost]), with mean absolute errors (MAEs) of 4.42 degrees, 3.77 degrees, 5.25 degrees, and 4.30 degrees for TIA500, TIA750, SSA500, and SSA750, respectively, in internal validation. External validation also showed MAEs of 3.93 degrees, 3.86 degrees, 5.02 degrees, and 4.74 degrees for TIA500, TIA750, SSA500, and SSA750, respectively. Linear regression using the pre-operative anterior chamber depth, anterior chamber width, crystalline lens rise, TIA, and ICL size also exhibited good performance, with no significant difference compared with XGBoost in the validation sets. Conclusions: We developed linear regression and ML models to predict postoperative ACAs for ICL surgery anterior segment metrics. These will prevent surgeons from overlooking the risks associated with the narrowing of the ACA. Translational Relevance: Using the proposed algorithms, surgeons can consider the postoperative ACAs to increase surgical accuracy and safety.


Asunto(s)
Cristalino , Miopía , Lentes Intraoculares Fáquicas , Humanos , Implantación de Lentes Intraoculares/efectos adversos , Implantación de Lentes Intraoculares/métodos , Miopía/cirugía , Cámara Anterior/diagnóstico por imagen , Cámara Anterior/cirugía
3.
Graefes Arch Clin Exp Ophthalmol ; 260(11): 3701-3710, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35748936

RESUMEN

PURPOSE: Myopic regression after surgery is the most common long-term complication of refractive surgery, but it is difficult to identify myopic regression without long-term observation. This study aimed to develop machine learning models to identify high-risk patients for refractive regression based on preoperative data and fundus photography. METHODS: This retrospective study assigned subjects to the training (n = 1606 eyes) and validation (n = 403 eyes) datasets with chronological data splitting. Machine learning models with ResNet50 (for image analysis) and XGBoost (for integration of all variables and fundus photography) were developed based on subjects who underwent corneal refractive surgery. The primary outcome was the predictive performance for the presence of myopic regression at 4 years of follow-up examination postoperatively. RESULTS: By integrating all factors and fundus photography, the final combined machine learning model showed good performance to predict myopic regression of more than 0.5 D (area under the receiver operating characteristic curve [ROC-AUC], 0.753; 95% confidence interval [CI], 0.710-0.793). The performance of the final model was better than the single ResNet50 model only using fundus photography (ROC-AUC, 0.673; 95% CI, 0.627-0.716). The top-five most important input features were fundus photography, preoperative anterior chamber depth, planned ablation thickness, age, and preoperative central corneal thickness. CONCLUSION: Our machine learning algorithm provides an efficient strategy to identify high-risk patients with myopic regression without additional labor, cost, and time. Surgeons might benefit from preoperative risk assessment of myopic regression, patient counseling before surgery, and surgical option decisions.


Asunto(s)
Miopía , Procedimientos Quirúrgicos Refractivos , Humanos , Estudios Retrospectivos , Miopía/diagnóstico , Miopía/cirugía , Fotograbar , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...