Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1396044, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257618

RESUMEN

Potato Verticillium wilt (PVW) caused by Verticillium dahliae is a vascular disease, that seriously affects potato (Solanum tuberosum L.) yield and quality worldwide. V. dahliae occupies the vascular bundle and therefore it cannot efficiently be treated with fungicides. Further, the application of these pesticides causes serious environmental problems. Therefore, it is of great importance to find environmentally friendly biological control methods. In this study, bacterial strains were isolated from agricultural lands on which potato had been cultured for 5 years. Five strains with a broad-spectrum antagonistic activity were selected. Among these five strains, Bacillus velezensis XS142 showed the highest antagonistic activity. To study the mechanism of XS142, by which this strain might confer tolerance to V. dahliae in potato, the genome of strain XS142 was sequenced. This showed that its genome has a high level of sequence identity with the model strain B. velezensis FZB42 as the OrthoANI (Average Nucleotide Identity by Orthology) value is 98%. The fungal suppressing mechanisms of this model strain are well studied. Based on the genome comparison it can be predicted that XS142 has the potential to suppress the growth of V. dahliae by production of bacillomycin D, fengycin, and chitinase. Further, the transcriptomes of potatoes treated with XS142 were analyzed and this showed that XS142 does not induce ISR, but the expression of genes encoding peptides with antifungal activity. Here we showed that XS142 is an endophyte. Further, it is isolated from a field where potato had been cultured for several years. These properties give it a high potential to be used, in the future, as a biocontrol agent of PVW in agriculture.

2.
PeerJ Comput Sci ; 10: e2164, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145256

RESUMEN

Arbitrage trading is a common quantitative trading strategy that leverages the long-term cointegration relationships between multiple related assets to conduct spread trading for profit. Specifically, when the cointegration relationship between two or more related series holds, it utilizes the stability and mean-reverting characteristics of their cointegration relationship for spread trading. However, in real quantitative trading, determining the cointegration relationship based on the Engle-Granger two-step method imposes stringent conditions for the cointegration to hold, which can easily be disrupted by price fluctuations or trend characteristics presented by the linear combination, leading to the failure of the arbitrage strategy and significant losses. To address this issue, this article proposes an optimized strategy based on long-short-term memory (LSTM), termed Dynamic-LSTM Arb (DLA), which can classify the trend movements of linear combinations between multiple assets. It assists the Engle-Granger two-step method in determining cointegration relationships when clear upward or downward non-stationary trend characteristics emerge, avoiding frequent strategy switches that lead to losses and the invalidation of arbitrage strategies due to obvious trend characteristics. Additionally, in mean-reversion arbitrage trading, to determine the optimal trading boundary, we have designed an optimized algorithm that dynamically updates the trading boundaries. Training results indicate that our proposed optimization model can successfully filter out unprofitable trades. Through trading tests on a backtesting platform, a theoretical return of 23% was achieved over a 10-day futures trading period at a 1-min level, significantly outperforming the benchmark strategy and the returns of the CSI 300 Index during the same period.

3.
Front Endocrinol (Lausanne) ; 15: 1397329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076508

RESUMEN

Background: Previous studies have not thoroughly explored the impact of serum osmolality levels on early mortality in heart failure and reduced ejection fraction (HFrEF) patients. The purpose of this study was to investigate the relationship between serum osmolality levels and early all-cause mortality in patients with HFrEF. Methods: The open access MIMIC-IV database was the source of data for our study. We collected demographic data, vital signs, laboratory parameters, and comorbidities of the included patients and divided them into 3 groups based on their initial serum osmolality on admission, with the primary outcome being all-cause mortality within 28 days of admission. Smoothing Spline Fitting Curve, the Kaplan-Meier survival curve, and Threshold effect analysis were used to assess the relationship between serum osmolality and early mortality in HFrEF patients. Results: A total of 6228 patients (55.31% male) were included. All-cause mortality within 28 days on admission was 18.88% in all patients. After adjusting for confounders, higher serum osmolality levels were independently associated with an increased risk of 28-days all-cause mortality compared with the reference group (Reference group Q2: 290-309 mmol/L, Q4: HR, 1.82 [95% CI 1.19-2.78] P<0.05, Q5: HR, 1.99 [95% CI 1.02-3.91] P<0.05). Smooth spline fitting revealed a U-shaped association between serum osmolality and 28-days all-cause mortality. Further threshold effect analysis results suggested that each unit increase in serum osmolality level was associated with a 2% increase in 28-days all-cause mortality when serum osmolality levels were ≥ 298.8 mmol/L (HR, 1.019 [95% CI 1.012-1.025] P<0.05). Conclusion: A U-shaped correlation between initial serum osmolality and 28-days all-cause mortality in HFrEF patients was identified, revealing higher osmolality levels significantly increase mortality risk. These results underscore serum osmolality's critical role in early mortality among HFrEF patients, highlighting the need for further, larger-scale studies for validation.


Asunto(s)
Insuficiencia Cardíaca , Volumen Sistólico , Humanos , Masculino , Femenino , Concentración Osmolar , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/fisiopatología , Estudios Retrospectivos , Anciano , Persona de Mediana Edad , Bases de Datos Factuales , Pronóstico , Causas de Muerte , Anciano de 80 o más Años
4.
Sci Data ; 11(1): 644, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886364

RESUMEN

The Mediterranean mussel, Mytilus galloprovincialis, is a significant marine bivalve species that has ecological and economic importance. This species is robustly resilient and highly invasive. Despite the scientific and commercial interest in studying its biology and aquaculture, there remains a need for a high-quality, chromosome-scale reference genome. In this study, we have assembled a high-quality chromosome-scale reference genome for M. galloprovincialis. The total length of our reference genome is 1.41 Gb, with a scaffold N50 sequence length of 96.9 Mb. BUSCO analysis revealed a 97.5% completeness based on complete BUSCOs. Compared to the four other available M. galloprovincialis assemblies, the assembly described here is dramatically improved in both contiguity and completeness. This new reference genome will greatly contribute to a deeper understanding of the resilience and invasiveness of M. galloprovincialis.


Asunto(s)
Cromosomas , Genoma , Mytilus , Mytilus/genética , Animales
5.
Ecol Evol ; 14(6): e11528, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932943

RESUMEN

Livestock grazing can strongly determine how grasslands function and their role in the carbon cycle. However, how ecosystem carbon exchange responds to grazing and the underlying mechanisms remain unclear. We measured ecosystem carbon fluxes to explore the changes in carbon exchange and their driving mechanisms under different grazing intensities (CK, control; HG, heavy grazing; LG, light grazing; MG, moderate grazing) based on a 16-year long-term grazing experimental platform in a desert steppe. We found that grazing intensity influenced aboveground biomass during the peak growing season, primarily by decreasing shrubs and semi-shrubs and perennial forbs. Furthermore, grazing decreased net ecosystem carbon exchange by decreasing aboveground biomass, especially the functional group of shrubs and semi-shrubs. At the same time, we found that belowground biomass and soil ammonium nitrogen were the driving factors of soil respiration in grazed systems. Our study indicates that shrubs and semi-shrubs are important factors in regulating ecosystem carbon exchange under grazing disturbance in the desert steppe, whereas belowground biomass and soil available nitrogen are important factors regulating soil respiration under grazing disturbance in the desert steppe; this results provide deeper insights for understanding how grazing moderates the relationships between soil nutrients, plant biomass, and ecosystem CO2 exchange, which provide a theoretical basis for further grazing management.

6.
Sensors (Basel) ; 24(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38793914

RESUMEN

A compact circularly polarized non-resonant slotted waveguide antenna array is proposed with the aim of achieving wide-angle scanning, circular polarization, and low side-lobe levels. The designed antenna demonstrates a scanning range of +11° to +13° in the frequency domain and a beam scanning range of -45° to +45° in the phase domain. This design exhibits significant advantages for low-cost two-dimensional electronic scanning circularly polarized arrays. It employs a compact element that reduces the aperture area by 50% compared to traditional circular polarization cavities. Additionally, the staggered array method is employed to achieve an element spacing of 0.57λ within the azimuth plane. Isolation gaps were introduced into the array to enhance the circular polarization performance of non-resonant arrays. The Taylor synthesis method was employed to reduce the side-lobe levels. A prototype was designed, fabricated, and measured. The results indicate superior radiation efficiency, favorable VSWR levels, and an axis ratio maintenance below 3 dB across the scanning range. The proposed antenna and methodology effectively broaden the beam scanning angle of circularly polarized slotted waveguide array antennas.

7.
J Environ Manage ; 357: 120765, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579467

RESUMEN

Livestock grazing strongly influences the accumulation of soil organic carbon (SOC) in grasslands. However, whether the changes occurring in SOC content under different intensities of continuous summer long grazing are associated with the changes in microbially-derived necromass C remains unclear. Here, we established a sheep grazing experiment in northern China in 2004 with four different stocking rates. Soil samples were collected after 17 years of grazing and analyzed for physical, chemical, and microbial characteristics. Grazing decreased SOC and microbial necromass carbon (MNC). Notably, grazing also diminished contributions of MNC to SOC. MNC declined with decreasing plant carbon inputs with degradation of the soil environment. Direct reductions in microbial necromass C, which indirectly reduced SOC, resulted from reduced in plant C inputs and microbial abundance and diversity. Our study highlights the key role of stocking rate in governing microbial necromass C and SOC and the complex relationships these variables.


Asunto(s)
Pradera , Suelo , Animales , Ovinos , Suelo/química , Carbono/análisis , Estaciones del Año , Nitrógeno/análisis , Plantas , China , Microbiología del Suelo
8.
Sci Rep ; 14(1): 4090, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374335

RESUMEN

Nitrogen and phosphorus resorption (NRE and PRE) is a critical nutrient conservation mechanism maintaining plant growth in already disturbed barren ecosystems. The complexity of plant nutrient resorption variations in long-term grazing regions is regulated by plant traits, nutritional utilization strategies, and soil conditions following changes in grazing patterns. Therefore, a detailed investigation into their underlying mechanism is still required. Here we investigated leaf nutrient concentration and resorption in dominant species Cleistogenes songorica (C. squarrosa) and Stipa breviflora (S. breviflora) response to 15-years continuous grazing (moderate and heavy grazing) in desert steppe. Moderate grazing enhanced green leaf N and P content in C. songorica and partially increased N content in S. breviflora. Heavy grazing consistently increased N content in C. songorica, but its P content as well as N and P content in S. breviflora were largely stable. Moderate grazing enhanced NRE but unaffected PRE in both S. breviflora and C. songorica. Heavy grazing reduced NRE and PRE in C. songorica. Although soil variables (nutrients and moisture) did not affect foliar nutrients, it's a key driver of nutrient resorption efficiency. Of all measured influence factors, soil moisture is the one most important and negatively correlated with NRE and PRE in S. breviflora. While it was not observed in C. songorica. In S. breviflora, its NRE was adversely linked with soil N, in addition, both NRE and PRE were positively associated with green leaf nutrients. Senesced leaf nutrients are the predominant factor influencing nutrient resorption efficiency in C. songorica, which were adversely associated. Overall, our results indicate significant variations in nutrient resorption efficiency patterns between the two dominant species due to divergent plant adaptation strategies to grazing and the local environment. The foliar nutritional status and soil conditions may play significant roles in regulating nutrient resorption in arid long-term grazing desert steppe.


Asunto(s)
Ecosistema , Isótopos de Nitrógeno , Suelo , Poaceae/fisiología , Plantas , Nitrógeno/análisis , Nutrientes , Fósforo , Hojas de la Planta/química
9.
J Environ Manage ; 347: 119112, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778075

RESUMEN

The mechanisms through which stocking rates affect soil organic carbon in desert steppe landscapes are not fully understood. To address this research gap, we investigated changes in the biomass of Stipa breviflora plant communities and soils in a desert steppe. Through our research findings, we can establish an appropriate stocking rate for Stipa breviflora desert steppe. The establishment serves as a theoretical foundation for effectively maintaining elevated productivity levels and increasing the carbon sink, thereby offering a valuable contribution towards mitigate climate change. This study examined the effects of different stocking rates on soil organic carbon input, sequestration, and output and found: (1) For soil organic carbon input, the aboveground and litter biomass of plant communities decreased with increasing stocking rate. (2) Grazing treatments did not affect soil organic carbon retention. (3) Regarding soil organic carbon output, the grazing treatments exhibited no significant alteration in soil respiration when compared to the no grazing. In summary, the primary mechanisms through which increasing stocking rates affect the soil organic carbon pool are decreased inputs from plants and increased output through wind erosion. Therefore, decreasing grazing intensity is key to improving soil organic carbon retention in the desert steppe.


Asunto(s)
Ecosistema , Suelo , Biomasa , Carbono/análisis , Plantas , Poaceae , China , Pradera
10.
Ecol Evol ; 13(10): e10581, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37809361

RESUMEN

Cleistogenes songorica, as a clustered grass, is the main grassland flora of the Stipa breviflora desert grassland. Some studies have shown that the constructive species of S. breviflora (sparse cluster type) is prone to cluster fragmentation; however, research on C. songorica is relatively rare. Then will the C. songorica plant population (dense cluster type) also have cluster fragmentation under the influence of intense grazing? To answer this question, we used variance analysis and geo-statistical methods. The spatial distribution of C. songorica in S. breviflora desert steppe in Inner Mongolia was measured under four grazing intensities (no grazing, CK, 0 sheep·ha-1·half year-1; light grazing, LG, 0.93 sheep·ha-1·half year-1; moderate grazing, MG, 1.82 sheep·ha-1·half year-1; and heavy grazing, HG, 2.71 sheep·ha-1·half year-1) and four scales (10 cm × 10 cm, 20 cm × 20 cm, 25 cm × 25 cm, 50 cm × 50 cm). We then analyzed C. songorica whether fragmentation was present. The results showed that increased grazing intensity is associated with increased density and decreased height, coverage, and standing crop of C. songorica. The spatial distribution of C. songorica was affected by structural factors, and spatial heterogeneity decreased with increased spatial scale. With increased grazing intensity and spatial scale, the patch area of C. songorica gradually increased and tended toward band distribution. In summary, increased grazing intensity and spatial scale led to weakened heterogeneity of C. songorica spatial distribution and increased consistency.

11.
Front Plant Sci ; 14: 1211182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711301

RESUMEN

Background: Changes in rainfall induced by climate change will likely influence the utilization of water resources and affect the nutrient cycle in plants in the water-limited desert steppe. In order to understand the response of nitrogen and phosphorus resorption characteristics of plant leaves to precipitation changes, this study compared the nitrogen (N) resorption efficiency, phosphorus (P) resorption efficiency and influencing factors of plants in a desert steppe through water treatment experiments. Methods: A 4-year field experiment was performed to examine the response and influencing factors of nitrogen (N) and phosphorus resorption efficiency of five dominant plants in Stipa breviflora desert steppe to simulated precipitation change in Inner Mongolia, with four simulated precipitation gradients including reducing water by 50%, natural precipitation, increasing water by 50%, increasing water by 100%. Results: Compared with natural precipitation, increasing water by 100% significantly increased soil moisture, and significantly increased the aboveground biomass of S. breviflora, C. songorica, A. frigida, decreased the N concentrations in green leaves of S. breviflora, Cleistogenes songorica, Artemisia frigida, Kochia prostrata, decreased the N concentrations in senesced leaves of C. songorica, decreased the P concentrations in green leaves of K. prostrata and Convolvulus ammannii, decreased the NRE of S. breviflora. NRE was significantly negatively correlated with N concentration in senesced leaves, and PRE was significantly negatively correlated with P concentration in senesced leaves. Conclusions: Increasing water indirectly reduces NRE by reducing plant leaf green leaves nitrogen concentration, and decreasing water indirectly reduces PRE by reducing soil moisture.

12.
Ecol Evol ; 13(7): e10300, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37441099

RESUMEN

Overgrazing-induced grassland degradation has become a serious ecological problem worldwide. The diversity and composition of soil microbial communities are sensitive to grazing disturbances. However, our understanding is limited with respect to the effects of grazing intensity on bacterial and fungal communities, especially in plant rhizosphere. Using a long-term grazing experiment, we evaluated the diversity and composition of microbial communities in both rhizosphere and non-rhizosphere soils under three grazing intensities (light, moderate, and heavy grazing) in a desert grassland and examined the relative roles of grazing-induced changes in some abiotic and biotic factors in affecting the diversity and composition of microbial communities. Our results showed that soil bacteria differed greatly in diversity and composition between rhizosphere and non-rhizosphere zones, and so did soil fungi. Moderate and heavy grazing significantly reduced the rhizosphere bacterial diversity. Grazing intensity substantially altered the bacterial composition and the fungal composition in both zones but with different mechanisms. While root nitrogen and soil nitrogen played an important role in shaping the rhizosphere bacterial composition, soil-available phosphorus greatly affected the non-rhizosphere bacterial composition and the fungal composition in both soils. This study provides direct experimental evidence that the diversity and composition of microbial communities were severely altered by heavy grazing on a desert grassland. Thus, to restore the grazing-induced, degraded grasslands, we should pay more attention to the conservation of soil microbes in addition to vegetation recovery.

13.
Mar Environ Res ; 189: 106045, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37295309

RESUMEN

Heating rate has gained extensive attention in mechanistic understanding of physiological responses to changing thermal conditions in the context of climate change. In polymorphic gastropods, differences in the absorption of solar energy between dark- and light-coloured individuals lead to supposable differences in their heating rates and body temperatures in sunshine. In the present study, we examined the effect of heating rate on heart rate (HR) in a polymorphic gastropod Batillaria attramentaria. By using biomimetic models, we found that daily maximum temperature of snails with a dark unbanded shell (D-type morph) was higher than snails with a white line on the upper side of each whorl (UL-type morph) by 0.6 °C when exposed to sunlight, but there was no apparent difference in heating rates between D- and UL-type models. We measured HR of snails at various heating rates from 3.0 to 9.0 °C h-1. Faster heating rates significantly increased maximum thermal tolerance in both D- and UL-type snails, highlighting the importance to have thorough knowledge on the heating rate in the field to obtain accurate maximum thermal limit of gastropods. Critical temperature at which HR precipitously declines was higher in D-type snails than UL-type snails. Our results suggested that the impacts of heating rate as well as the shell colour should be considered to gain a mechanistic understanding of the population dynamics of polymorphic gastropods.


Asunto(s)
Gastrópodos , Humanos , Animales , Gastrópodos/fisiología , Calefacción , Color , Temperatura , Cambio Climático
14.
J Orthop Surg Res ; 18(1): 446, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37344882

RESUMEN

Osteosarcoma (OS) is one of the most common malignant neoplasms in children and adolescents. Immune infiltration into the microenvironment of the tumor has a positive correlation with overall survival in patients with OS. The purpose of this study was to search for potential diagnostic markers that are involved in immune cell infiltration for OS. Patients with OS who acquired metastases within 5 years (n = 34) were compared to patients who did not develop metastases within 5 years (n = 19). Differentially expressed genes (DEGs) were tested for in both patient groups. To discover possible biomarkers, the LASSO regression model and the SVM-RFE analysis were both carried out. With the assistance of CIBERSORT, the compositional patterns of the 22 different types of immune cell fraction in OS were estimated. In this research, a total of 33 DEGs were obtained: 33 genes were significantly downregulated. Moreover, we identified six critical genes, including ALOX5AP, HLA-DOA, HLA-DMA, HLA-DRB4, HCLS1 and LOC647450. ROC assays confirmed their diagnostic value with AUC > 0.7. In addition, we found that the six critical genes were associated with immune infiltration. Then, we confirmed the expression of ALOX5AP was distinctly decreased in OS specimens and cell lines. High expression of ALOX5AP predicted an advanced clinical stage and overall survival of OS patients. Functionally, we found that overexpression of ALOX5AP distinctly suppressed the proliferation, migration, invasion and EMT via modulating Wnt/ß-catenin signaling. Overall, we found that ALOX5AP overexpression inhibits OS development via regulation of Wnt/ß-catenin signaling pathways, suggesting ALOX5AP as a novel molecular biomarker for enhanced therapy of OS.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adolescente , Niño , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias Óseas/patología , Pronóstico , Osteosarcoma/patología , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Microambiente Tumoral/genética , Proteínas Activadoras de la 5-Lipooxigenasa/genética , Proteínas Activadoras de la 5-Lipooxigenasa/metabolismo
15.
Sci Total Environ ; 873: 162166, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801405

RESUMEN

Heavy grazing generally reduces grassland biomass, further decreasing its carbon sink. Grassland carbon sink is determined by both plant biomass and carbon sink per unit biomass (specific carbon sink). This specific carbon sink could reflect grassland adaptative response, because plants generally tend to adaptively enhance the functioning of their remaining biomass after grazing (i.e. higher leaf nitrogen content). Though we know well about the regulation of grassland biomass on carbon sink, little attention is paid to the role of specific carbon sink. Thus, we conducted a 14-year grazing experiment in a desert grassland. Ecosystem carbon fluxes, including net ecosystem CO2 exchange (NEE), gross ecosystem productivity (GEP) and ecosystem respiration (ER), were measured frequently during five consecutive growing seasons with contrasting precipitation events. We found that heavy grazing reduced NEE more in drier (-94.0 %) than wetter (-33.9 %) years. However, grazing did not reduce community biomass much more in drier (-70.4 %) than wetter years (-66.0 %). These meant a positive response of specific NEE (NEE per unit biomass) to grazing in wetter years. This positive response of specific NEE was mainly caused by a higher biomass ratio of other species versus perennial grasses with greater leaf nitrogen content and specific leaf area in wetter years. In addition, we also detected a shift of grazing effects on specific NEE from positive in wetter years to negative in drier years. Overall, this study is among the first to reveal the adaptive response of grassland specific carbon sink to experimental grazing in plant trait view. The stimulation response of specific carbon sink can partially compensate for the loss of grassland carbon storage under grazing. These new findings highlight the role of grassland adaptive response in decelerating climate warming.


Asunto(s)
Ecosistema , Pradera , Secuestro de Carbono , Agua , Plantas , Carbono , Nitrógeno , Suelo
16.
Commun Biol ; 6(1): 5, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596992

RESUMEN

The roles of synonymous mutations for adapting to stressful thermal environments are of fundamental biological and ecological interests but poorly understood. To study whether synonymous mutations influence thermal adaptation at specific microhabitats, a genome-wide genotype-phenotype association analysis is carried out in the black mussels Mytilisepta virgata. A synonymous mutation of Ubiquitin-specific Peptidase 15 (MvUSP15) is significantly associated with the physiological upper thermal limit. The individuals carrying GG genotype (the G-type) at the mutant locus possess significantly lower heat tolerance compared to the individuals carrying GA and AA genotypes (the A-type). When heated to sublethal temperature, the G-type exhibit higher inter-individual variations in MvUSP15 expression, especially for the mussels on the sun-exposed microhabitats. Taken together, a synonymous mutation in MvUSP15 can affect the gene expression profile and interact with microhabitat heterogeneity to influence thermal resistance. This integrative study sheds light on the ecological importance of adaptive synonymous mutations as an underappreciated genetic buffer against heat stress and emphasizes the importance of integrative studies at a microhabitat scale for evaluating and predicting the impacts of climate change.


Asunto(s)
Bivalvos , Termotolerancia , Animales , Mutación Silenciosa , Bivalvos/genética , Aclimatación/genética , Termotolerancia/genética , Temperatura
17.
J Environ Manage ; 327: 116882, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455443

RESUMEN

The 'Grain-for-Green' program in China provides a valuable opportunity to investigate whether spontaneous restoration can reverse the deterioration of grassland ecosystem functions. Previous studies have focused on individual ecosystem functions, but the response of and mechanisms driving variation in ecosystem multifunctionality (EMF) during restoration are poorly understood. Here, we quantified EMF using productivity, nutrient cycling, and water regulation functions along abandoned croplands in a recovery chronosequence (5, 15 and 20 years) and in natural grasslands in the desert steppe and typical steppe. We also analyzed the effects of plant and microbial diversity and an abiotic factor (soil pH) on EMF. Our results showed that EMF increased gradually concomitant with recovery time, shifting toward EMF values comparable to those in natural grasslands in both desert and typical steppe. Similar results were found for the productivity function, the water regulation function, and soil organic carbon. However, even after 20 years of restoration, EMF did not reach the levels observed in natural grasslands. Structural equation modeling showed that the driving mechanisms of EMF differed between the two steppe types. Specifically, in the desert steppe, plant diversity, especially the diversity of perennial graminoids and perennial herbs, had a positive effect on EMF, but in the typical steppe, soil bacterial diversity had a negative effect, while soil pH had a positive effect on EMF. Our results demonstrated that spontaneous grassland restoration effectively enhanced EMF, and emphasized the importance of biodiversity and soil pH in regulating EMF during secondary succession. This work provides important insights for grassland ecosystem management in arid and semi-arid regions.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Carbono/análisis , Biodiversidad , China , Agua , Productos Agrícolas , Concentración de Iones de Hidrógeno , Pradera
18.
Oecologia ; 201(1): 259-268, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36507970

RESUMEN

Mowing for hay is an important land use in grasslands that is affected by precipitation variability, due to the water-limited nature of these ecosystems. Past land use and precipitation conditions can have legacy effects on ecosystem functions, potentially altering responses to both mowing and precipitation. Nonetheless, it is still unclear how natural variation in precipitation will affect plant responses to changes in mowing intensity. We conducted a seven-year field experiment with three mowing intensity treatments compared to the traditional mowing intensity (5 cm stubble height) as a control: increased mowing (2 cm stubble), decreased mowing (8 cm stubble) and ceased mowing. Decreased mowing increased both plant aboveground net primary productivity [ANPP] and forage yield across the whole community, driven by increases in graminoids, mainly owing to the positive response of plants to precipitation. Both mowing disturbance and precipitation variability had legacy effects on plant ANPP; however, these responses differed among the whole community, graminoid, and forb levels. Current-year community-wide ANPP [ANPPn] was positively associated with current-year precipitation [PPTn] in all mowing treatments, driven by positive precipitation responses of the dominant graminoids. For forbs, however, ANPPn was negatively associated with prior-year growing season precipitation [PPTn-1] across mowing treatments, potentially due to lagged competition with the dominant graminoids. Our results suggest that the response of the dominant graminoids is the primary factor determining the response of ANPP to mowing and precipitation variability in these grassland ecosystems, and highlight that decreasing mowing intensity may maximize both herder's income and grassland sustainability.


Asunto(s)
Ecosistema , Pradera , Poaceae/fisiología , Lluvia , Plantas
19.
Mol Ecol Resour ; 23(1): 253-272, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35932461

RESUMEN

Locoweeds are perennial forbs poisonous to livestock and cause extreme losses to animal husbandry. Locoweed toxicity is attributed to the symbiotic endophytes in Alternaria sect. Undifilum, which produce a mycotoxin swainsonine (SW). We performed a de novo whole genome sequencing of the most common locoweed in China, Oxytropis ochrocephala (2n = 16), and assembled a high-quality, chromosome-level reference genome. Its genome size is 958.83 Mb with 930.94 Mb (97.09%) anchored and oriented onto eight chromosomes, and 31,700 protein-coding genes were annotated. Phylogenetic and collinearity analysis showed it is closely related to Medicago truncatula with a pair of large interchromosomal rearrangements, and both species underwent a whole-genome duplication event. We also derived the genome of A. oxytropis at 74.48 Mb with a contig N50 of 8.87 Mb and 10,657 protein-coding genes, and refined the genes of SW biosynthesis. Multiple Alternaria species containing the swnK gene were grouped into a single clade, but in other genera, swnK's homologues are diverse. Resequencing of 41 A. oxytropis strains revealed one SNP in the SWN cluster causing changes in SW concentration. Comparing the transcriptomes of symbiotic and nonsymbiotic interactions identified differentially expressed genes (DEGs) linked to defence and secondary metabolism in the host. Within the endophyte DEGs were linked to cell wall degradation, fatty acids and nitrogen metabolism. Symbiosis induced the upregulation of most of the SW biosynthetic genes. These two genomes and relevant sequencing data should provide valuable genetic resources for the study of the evolution, interaction, and SW biosynthesis in the symbiont.


Asunto(s)
Ascomicetos , Oxytropis , Swainsonina/análisis , Swainsonina/metabolismo , Oxytropis/genética , Oxytropis/metabolismo , Endófitos/genética , Endófitos/metabolismo , Alternaria/genética , Alternaria/metabolismo , Simbiosis/genética , Filogenia , Ascomicetos/metabolismo
20.
J Exp Biol ; 225(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239074

RESUMEN

Gastropods exhibit remarkable variation in shell colour within and among populations, but the function of shell colour is often not clear. In the present study, body temperature in the field and physiological and transcriptomic responses to thermal stress were investigated in different shell colour morphs of the mudflat snail Batillaria attramentaria. Using biomimetic models, we found that the body temperature of snails with a dark unbanded shell (D-type morph) was slightly higher than that of snails with a white line on the upper side of each whorl (UL-type morph) when exposed to sunlight. Despite no differences in upper lethal temperature among shell colour morphs, their Arrhenius breakpoint temperature (ABT) for cardiac thermal performance differed significantly, and the ABT of snails with the D-type morph was higher than that of snails with the UL-type morph. Transcriptomic analysis showed that D-type snails exhibit higher levels of four heat shock proteins (HSPs) than UL-type snails at control temperature. The unfolded protein response was activated in UL-type snails but not in D-type snails under moderate thermal stress. And 11 HSPs showed an increase in UL-type snails in contrast to 1 HSP in D-type snails, suggesting a 'preparative defence' strategy of the heat shock response in D-type snails under moderate thermal stress. When exposed to sublethal temperature, eight molecular chaperones were uniquely upregulated in D-type snails, suggesting these genes may allow D-type snails to improve their cardiac thermal tolerance. Our results suggest that the preparative defence strategies and higher ABT for cardiac thermal performance may allow the dark shell snails to adapt to rapid and stronger thermal stress in the field.


Asunto(s)
Gastrópodos , Respuesta al Choque Térmico , Animales , Color , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...