RESUMEN
Due to the unique photosensitivity of silver compounds, they exhibit good photocatalytic activity as photocatalysts in the degradation of water pollutants. However, silver compounds have poor cycling stability and are prone to decomposition and reaction under light to form metallic silver, which greatly limits their practical application. Herein, a (2-(2-(diphenylphosphaneyl)ethyl)-9-methyl-1.10-phenanthroline (PSNNP)) pincer ligand was designed for stabilizing the central metal. The in situ-formed PSNNP ligand could be readily generated in one pot with the participation of silver halides. The reaction of silver halides with dppeda (N,N,N',N'-tetra(diphenylphosphanylmethyl)ethylene diamine) in the presence of dmp (2,9-dimethyl-1,10-phenanthroline) in acetonitrile afforded complexes Ag2X2 (PSNNP)2 (complexes 1, 2) (X = Cl, Br). Single-crystal X-ray diffraction shows that the tridentate coordination of the pincer ligand provides strong binding with metal centers and leads to high stability of the pincer metal unit. The removal rate of rhodamine B (RhB) by complexes 1 and 2 can reach up to 100%, demonstrating an excellent photocatalytic degradation performance for organic dyes. The important effect of PSNNP ligands on photocatalytic properties after coordination with central metals was studied through experiments and discrete Fourier transform (DFT) calculations. The photocatalytic reaction mechanism of complexes 1 and 2 was also studied. This result provides an effective pathway for the first synthesis of PSNNP and interesting insights into photocatalytic degradation chemistry.
RESUMEN
BACKGROUND: The melon fly, Zeugodacus cucurbitae (Coquillett), is an invasive Tephritidae pest with robust fertility. The male accessory glands (MAGs) form a vital organ that ensures insect reproductive efficiency. Most of the secreted proteins by MAGs exhibit a male bias expression. Takeout, one of these proteins, is abundantly present in the MAGs of many insects. RESULTS: In this study, we identified 32 takeout genes in Z. cucurbitae. The phylogenetic analysis and multiple sequence alignment results showed that Zctakeout1 is the most related homolog to the MAGs-specific takeout in Tephritidae. The real-time quantitative PCR results showed that Zctakeout1 was exclusively expressed in the male adult stage, and its expression level gradually increased with the increase in age and then remained stable at the sexually matured stage. The distribution among tissues demonstrated the specific expression of Zctakeout1 in the MAGs, and fluorescence immunohistochemical results confirmed the presence of Zctakeout1 in close proximity to binuclear cells of the mesoderm epidermal MAGs. In continuation, CRISPR/Cas9-mediated genome editing was employed, resulting in successfully generating a homozygous strain with an +8 bp insertion. The mating experiments with the Zctakeout1-/- males resulted in significant reductions in both the mating rate and egg production of females. CONCLUSION: These findings prove that the MAGs-specific Zctakeout1 is essential in regulating fecundity in female Z. cucurbitae fruit flies. Our data suggests its utilization in future essential insect-specific gene-directed sterility insect technique (SIT) by the genetic manipulation to keep these important Tephritidae populations under control. © 2024 Society of Chemical Industry.
Asunto(s)
Sistemas CRISPR-Cas , Fertilidad , Proteínas de Insectos , Tephritidae , Animales , Masculino , Femenino , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Tephritidae/genética , Tephritidae/fisiología , Técnicas de Inactivación de Genes , FilogeniaRESUMEN
The melon fly Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agricultural quarantine pest threatening fruit and vegetable production. Heat shock cognate 70 (Hsc70), which is a homolog of the heat shock protein 70 (Hsp70), was first discovered in mice testes and plays an important role in spermatogenesis. In this study, we identified and cloned five Hsc70 genes from melon fly, namely ZcHsc70_1/2/3/4/5. Phylogenetic analysis showed that these proteins are closely related to Hsc70s from other Diptera insects. Spatiotemporal expression analysis showed that ZcHsc70_1 and ZcHsc70_2 are highly expressed in Z. cucurbitae testes. Fluorescence in situ hybridization further demonstrated that ZcHsc70_1 and ZcHsc70_2 are expressed in the transformation and maturation regions of testes, respectively. Moreover, RNA interference-based suppression of ZcHsc70_1 or ZcHsc70_2 resulted in a significant decrease of 74.61% and 63.28% in egg hatchability, respectively. Suppression of ZcHsc70_1 expression delayed the transformation of sperm cells to mature sperms. Meanwhile, suppression of ZcHsc70_2 expression decreased both sperm cells and mature sperms by inhibiting the meiosis of spermatocytes. Our findings show that ZcHsc70_1/2 regulates spermatogenesis and further affects the male fertility in the melon fly, showing potential as targets for pest control in sterile insect technique by genetic manipulation of males.
Asunto(s)
Semillas , Tephritidae , Masculino , Animales , Ratones , Filogenia , Hibridación Fluorescente in Situ , Tephritidae/genética , Control de Insectos/métodos , Espermatogénesis/genética , Fertilidad/genética , Respuesta al Choque TérmicoRESUMEN
BACKGROUND: The melon fly, Zeugodacus cucurbitae Coquillett, is one of the major pests attacking Cucurbitaceae crops. Identifying critical genes or proteins regulating fertility is essential for sustainable pest control and a research hotspot in insect physiology. MicroRNAs (miRNAs) are short RNAs that do not directly participate in protein translation, but instead function in post-transcriptional regulation of gene expression involved in male fertility. RESULTS: We found that miR-927-5p is highly expressed in the testes and investigated its function in spermatogenesis in Z. cucurbitae. Fluorescence in situ hybridization (FISH) showed miR-927-5p in the transformation and maturation region of the testis, and overexpression of miR-927-5p reduced the number of sperms by 53%. In continuation, we predicted 12 target genes of miR-927-5p using bioinformatics combined with transcriptome sequencing data, and found that miR-927-5p targets the new gene Stalky in insects, which was validated by quantitative real-time PCR, RNA pull-down and dual luciferase reporter assays. FISH also confirmed the co-localization of miR-927-5p and the transcript Stalky_1 in the testis. Moreover, silencing of Stalky_1 by RNA interference reduced the number of sperms by 32% and reduced sperm viability by 39% in physiologically mature male adults. Meanwhile, the silencing of Stalky_1 also resulted in low hatchability. CONCLUSION: Our work not only presents a new, so far unreported mechanism regulating spermatogenesis by miR-927-5p targeting a new unknown target, Stalky, which is providing new knowledge on the regulatory network of insect spermatogenesis, but also lays a foundation for the development of SIT against important tephritid fly pests. © 2024 Society of Chemical Industry.
Asunto(s)
Proteínas de Insectos , MicroARNs , Tephritidae , Animales , MicroARNs/genética , MicroARNs/metabolismo , Masculino , Tephritidae/genética , Tephritidae/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Espermátides/metabolismo , Espermatogénesis/genética , Testículo/metabolismoRESUMEN
Vitellogenin (Vg) genes encode the major egg yolk protein precursor in arthropods. In this study, four Vgs were identified in Zeugodacus cucurbitae (Coquillett). Sequence analysis showed that four ZcVgs had the conserved Vg domain. Phylogenetic analysis indicated that four ZcVgs were homologous to the Vgs of Tephritidae insects. The temporal and spatial expression patterns of ZcVgs were analyzed by quantitative real-time polymerase chain reaction (RT-qPCR), and the four ZcVgs showed high expression levels in female adults, especially in the fat body. The expression of ZcVg1 and ZcVg3 was down-regulated by a low dosage (0.5 µg) of 20-hydroxyecdysone (20E), and ZcVg2, ZcVg3, and ZcVg4 were up-regulated by a high dosage (1.0 and 2.0 µg) of 20E. The expression of ZcVg1 and ZcVg2 was up-regulated by 5 µg of juvenile hormone (JH), while all of the ZcVgs were down-regulated by a low and high dosage of JH. Expression of ZcVgs was down-regulated after 24 h of starvation and recovered to normal after nutritional supplementation. After micro-injection of the gene-specific double-stranded RNA, the ZcVgs' expression was significantly suppressed, and ovarian development was delayed in Z. cucurbitae females. The results indicate that RNA interference of reproduction-related genes is a potential pest control method that works by manipulating female fertility.
RESUMEN
Six Cu(i) complexes, [Cu(2,3-f)(bdppmapy)]BF4 (1), [Cu(2,3-f)(bdppmapy)]ClO4 (2), [Cu(2,3-f)(bdppmapy)]CF3SO3 (3), [Cu(imidazo[4,5-f])(bdppmapy)]BF4 (4), [Cu(imidazo[4,5-f])(bdppmapy)]ClO4 (5), and [Cu(imidazo[4,5-f])(bdppmapy)]CF3SO3·MeOH (6·MeOH) (bdppmapy = N,N-bis[(diphenylphosphino)methyl]-2-pyridinamine, 2,3-f = pyrazine[2,3-f][1,10]-phenanthroline, and imidazo[4,5-f] = 1H-imidazo[4,5-f][1,10]-phenanthroline), have been synthesized to explore the effects of counteranions on their crystal structures, photophysical properties, and terahertz (THz) spectra. Time-dependent density functional theory (TD-DFT) shows that the luminescence performance of these complexes is attributed to the metal-to-ligand charge transfer (MLCT) in combination with ligand-to-ligand charge transfer (LLCT). In complexes 1-3, the characteristic peak at 1.4 THz is mainly related to the C-Hπ interaction formed by the H atom on the 4#/5# position of 2,3-f and the benzene ring from the bdppmapy on the adjacent asymmetric unit. The common C-Hπ interaction enhances the rigidity of the structure and has non-negligible influence on the photoluminescence quantum yields (PLQYs): the stronger the C-Hπ interaction is, the higher the quantum yield (QY) is. In complexes 4-6, similar absorption peaks (1.10-1.30 THz) are mainly related to the C-Hπ interactions, and strong absorption peaks (1.50-1.90 THz) are affected by the typical hydrogen bonds N-HF/O and O-HO. These results show that some weak interactions can be characterized by THz time-domain spectroscopy (THz-TDS). So, the THz spectroscopy method would make it possible to tune some of the weak interactions in complex structures to regulate the luminescence of materials.
RESUMEN
The synthesis of four heteroleptic dinuclear Cu(i) complexes bearing tetraphosphine and diimine ligands was reported. Complexes 1-3 were successfully obtained through microwave synthesis while complex 4 was synthesized through traditionally stirring at room temperature. These complexes are listed as follows: [Cu2(Dpq)2(dppeda)](ClO4)2·1.5CH2Cl2 (1), [Cu2(neo)2(dppeda)](ClO4)2·1.3CH2Cl2·1.7C4H10O (2), [Cu2(batho)2(dppeda)](ClO4)2·C4H10O (3), and [Cu2(batho)2(dpppda)](ClO4)2·3CH2Cl2 (4) {(Dpq = pyrazino[2,3-f][1,10]phenanthroline, batho = 4,7-diphenyl-1,10-phenanthroline, neo = 2,9-dimethyl-1,10-phenanthroline, dppeda = N1,N1,N2,N2-tetrakis[(diphenylphosphino)methyl]-1,2-ethanediamine, and dpppda = N1,N1,N4,N4-tetrakis[(diphenylphosphino)methyl]-1,4-benzenediamine}. Their crystal structures have been elucidated by X-ray crystallography and their photophysical properties have been investigated in detail. Photophysical studies and time domain density functional theory (TD-DFT) calculations show that the luminescence performance of these four complexes is ascribed to metal-to-ligand charge transfer (MLCT) mixed with ligand-to-ligand charge transfer (LLCT), and complex 2 shows green emission at 574 nm with the highest quantum yield of up to 52.80%. In addition, the research of photoluminescence properties under the guidance of terahertz spectroscopy technology leads to the preliminary discovery of a correlation between crystal packing and luminescence. It is found that the terahertz spectrum and absorption peak are strongly interdependent on C-Hπ and ππ interactions, and the external weak interactions have negative effects on the luminescence performance. Herein, we predict that the terahertz spectroscopy analysis establishes a bridge between weak interactions (C-Hπ and ππ interactions) and the photoluminescence properties, and puts forward a problem that should be noticed in designing Cu(i) complexes.
RESUMEN
BACKGROUND: Long non-coding RNAs (lncRNAs) are involved in many fundamental biological processes, such as transcription regulation, protein degradation, and cell differentiation. Information on lncRNA in the melon fly, Zeugodacus cucurbitae (Coquillett) is currently limited. RESULTS: We constructed 24 RNA-seq libraries from eight tissues (midgut, Malpighian tubules, fat body, ovary, and testis) of Z. cucurbitae adults. A total of 3124 lncRNA transcripts were identified. Among those, 1464 were lincRNAs, 1037 were intronic lncRNAs, 301 were anti-sense lncRNAs, and 322 were sense lncRNAs. The majority of lncRNAs contained two exons and one isoform. Differentially expressed lncRNAs were analyzed between tissues, and Malpighian tubules versus testis had the largest number. Some lncRNAs exhibited strong tissue specificity. Specifically expressed lncRNAs were identified and filtered in tissues of female and male Z. cucurbitae based on their expression levels. Four midgut-specific lncRNAs were validated by quantitative real-time polymerase chain reaction (RT-qPCR), and the data were consistent with RNA-seq data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of targets of midgut-specific lncRNAs indicated an enrichment of the metabolic process. CONCLUSIONS: This was the first systematic identification of lncRNA in the melon fly. Expressions of lncRNAs in multiple adult tissues were evaluated by quantitative transcriptomic analysis. These qualitative and quantitative analyses of lncRNAs, especially the tissue-specific lncRNAs in Z. cucurbitae, provide useful data for further functional studies.
Asunto(s)
ARN Largo no Codificante/genética , Tephritidae/genética , Transcriptoma , Animales , Femenino , Masculino , Túbulos de Malpighi/metabolismo , Especificidad de Órganos , ARN Largo no Codificante/metabolismo , Tephritidae/metabolismoRESUMEN
The green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), is an important agricultural pest with a wide range of host plants. To study effects of host species on the life history traits of M. persicae, aphids were individually reared on five host plants: Brassica campestris L. (Brassicales: Brassicaceae), Capsicum annuum L. (Tubiflorae: Solanaceae), Nicotiana tabacum L. (Tubiflorae: Solanaceae), Raphanus sativus L. (Brassicales: Brassicaceae), and Vicia faba L. (Rosales: Leguminosae). TWOSEX-MSchart software was used for the statistical analysis according to the age-stage, two-sex life table theory. The results showed that the shortest preadult stage and adult/total prereproductive period of M. persicae were 6.48, 0.19, and 6.67 d on V. faba, respectively. While the adult and total longevity of M. persicae on R. sativus (25.00 and 31.62 d) and N. tabacum (24.40 and 30.56 d) were significantly longer than that on the other three hosts, as was the reproductive period. The fecundity of M. persicae on R. sativus (80.83 nymphs per female), N. tabacum (71.72 nymphs per female), and V. faba (70.39 nymphs per female) was also greater than that on B. campestris and C. annuum. It was demonstrated that V. faba, R. sativus, and N. tabacum were more suitable plants for the growth of M. persicae exhibiting a shorter preadult stage, longer longevity, and greater fecundity than the remaining two species, as confirmed by the higher intrinsic rate of increase and net reproductive rate.
Asunto(s)
Áfidos/fisiología , Cadena Alimentaria , Herbivoria , Rasgos de la Historia de Vida , Animales , Áfidos/crecimiento & desarrollo , Femenino , Longevidad , Magnoliopsida/fisiología , Masculino , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Crecimiento DemográficoRESUMEN
Bactrocera minax (Enderlein) (Diptera: Tephritidae) is an important citrus pest in Asia with a non-uniform distribution. In some locations, it had been reported to occur but was either eradicated or disappeared itself. To understand species dispersal of B. minax, we collected and analyzed 359 individuals from 18 localities in China. One mitochondrial DNA gene fragment (nad4) was used to investigate the genetic diversity and population genetic structure of B. minax. The populations were divided by phylogenetic analyses and statistical parsimony haplotype networks into three branches: a Central China (CC) branch, a Western China (WC) branch, and a Southern China (SC) branch. A total of 93 variable sites (15.6% of the 595 bp alignment) and 91 unique haplotypes were observed in the 359 individuals scored from the nad4 gene of the 18 B. minax populations. This indicated that B. minax had a high level of genetic diversity. These populations also showed a discrete distribution in both the scatter plots of genetic versus geographical distance for pairwise population comparisons and the median-joining network of haplotypes, which revealed the strong genetic structure of B. minax.
RESUMEN
To develop proton-conducting materials under low-humidity conditions and at moderate working temperature still remains challenging for fuel-cell technology. Here, a new type of proton-conducting material, EIMS-HTFSA@MIL, which was prepared by impregnating the binary ionic liquid, EIMS-HTFSA (EIMS=1-(1-ethyl-3-imidazolium)propane-3-sulfonate; HTFSA=N,N-bis(trifluoromethanesulfonyl)amide), into a mesoporous metal-organic framework, MIL-101 ([Cr3 F(H2 O)2 O(BDC)3 â n H2 O] (n≈0.25, BDC=1,4-benzenedicarboxylate)) is reported. By taking advantage of the ionic-liquid properties, such as high thermal stability, non-volatility, non-flammability, and low corrosivity, EIMS-HTFSA@MIL shows potential application as a safe electrolyte in proton conduction above 100 °C.
RESUMEN
A Cd(II)-based metal-organic framework, [Cd2(DPDC)2(BTB)]∞ (Cd-MOF, DPDC = 2,2'-diphenyldicarboxylate and BTB = 1,4-bis(1,2,4-triazol-1-yl)butane) was successfully constructed via a hydrothermal reaction. Structural analysis shows that the synthesized Cd-MOF is a three-dimensional (3D) architecture crystallized in the hexagonal system with a chiral space group P61. Powder X-ray diffraction experiments and thermogravimetric analysis reveal that the constructed Cd-MOF has a high chemical and thermal stability. A study of additional mechanical properties indicates that it exhibits a moderate stiffness with the average values of Young's modulus (E) and H as 11.3(2) and 0.9(7) GPa, respectively. The luminescence properties of the Cd-MOF were further studied. The result shows that it could be an effective sensor to the organic nitrobenzene molecule via a strong quenching effect, and also to the inorganic Tb(III) ion by a strong green emission effect. Moreover, when loading bimetal ions (Eu(III) and Tb(III) into the Cd-MOF/methanol suspension, tunable visible luminescence can also be achieved by carefully adjusting the excitation wavelengths.
RESUMEN
The hydrothermal reaction of the same reactive system containing Ln(NO3)3·6H2O, tetrafluorophthalic acid (H2TFPht), and 1,10-phenanthroline (phen) at different temperatures yielded coordination polymers, [Ln2(TFPht)3(phen)2(H2O)2]·H2O (Ln = Sm 1, Eu 2, Gd 3, Tb 4, Dy 5; at 120 °C), La(TFPht)(TFBA)(phen)(H2O) (6; at 160 °C), Ln3(TFPht)4(TFBA)(phen)3(H2O)3 (Ln = Dy 7, Tb 8, Yb 9; at 160 °C), and Ln2(TFBA)6(phen)2 (Ln = Eu 10, Tb 11; at 180 °C). 2,3,4,5-Tetrafluorobenzoic acid (TFBA) was produced from the decarboxylation of TFPht. X-ray structural analysis reveals that these compounds contain different structural motifs. Complexes 1-5 exhibit zigzag chain structures based on the center-related tetranuclear [Ln4] as SBUs (Secondary Building Units) with two crystallographically independent Ln(3+) ions. Complex 6 contains a double chain structure with center-related binuclear [La2] as SBUs. Complexes 7-9 show single chain structures involving center-related hexanuclear [Ln6] as SBUs with three crystallographically independent Ln(3+) ions. Complexes 10 and 11 have ribbon chain structures involving binuclear [Ln2] as SBUs with two crystallographically independent Ln(3+) ions. The photoluminescence properties of complexes 1-5 were studied. The Eu(3+) and Tb(3+) complexes exhibit bright red and green emissions with quantum yields of 15.87% for 2 and 23.82% for 4. The two-component Dy:Eu- and three-component Gd:Dy,Eu-doped complexes provided white light emission. Moreover, 2 could be a potential luminescent probe for detecting nitrobenzene and Ni(2+) ion through significant fluorescence decrease of Eu(3+).