Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36555784

RESUMEN

Ribosomal protein S6 kinase 1 (S6K1), a key downstream effector of the mammalian target of rapamycin (mTOR), regulates diverse functions, such as cell proliferation, cell growth, and protein synthesis. Because S6K1 was previously known to be localized in the cytoplasm, its function has been mainly studied in the cytoplasm. However, the nuclear localization and function of S6K1 have recently been elucidated and other nuclear functions are expected to exist but remain elusive. Here, we show a novel nuclear role of S6K1 in regulating the expression of the Wnt target genes. Upon activation of the Wnt signaling, S6K1 translocated from the cytosol into the nucleus and subsequently bound to ß-catenin and the cofactors of the Wnt/ß-catenin transcriptional complex, leading to the upregulation of the Wnt target genes. The depletion or repression of S6K1 downregulated the Wnt target gene expression by inhibiting the formation of the Wnt/ß-catenin transcriptional complex. The S6K1-depleted colon cancer cell lines showed lower transcription levels of the Wnt/ß-catenin target genes and a decrease in the cell proliferation and invasion compared to the control cell lines. Taken together, these results indicate that nuclear S6K1 positively regulates the expression of the Wnt target genes by inducing the reciprocal interaction of the subunits of the transcriptional complex.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Vía de Señalización Wnt/fisiología , beta Catenina/genética , beta Catenina/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Núcleo Celular/metabolismo , Línea Celular
2.
Arch Pharm Res ; 45(7): 494-505, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35759089

RESUMEN

Numerous active compounds derived from ginseng exhibit various pharmacological and therapeutic effects in humans. Despite the benefits of ginsenosides, little is known about their influence on embryonic development, especially in human embryonic models. In this study, we evaluated the effect of two ginsenosides (Rg3 and Rh2) on human embryonic development, using embryoid bodies and three-dimensional (3D) aggregates of pluripotent stem cells. We exposed embryoid bodies to varying concentrations of Rg3 and Rh2 (5, 10, and 25 µg/mL), and their embryotoxicity was evaluated by measuring the size of the embryoid body and the expression of epithelial-mesenchymal transition (EMT) markers. The growth rates of embryoid bodies were reduced upon treatment with a high concentration (25 µg/mL) of Rg3 and Rh2. In addition, Rg3 induced E-cadherin expression while inhibiting N-cadherin and vimentin expression, which implies the inhibition of EMT. Such a change in E-cadherin expression was not observed after Rh2 treatment, but the inhibition of N-cadherin and vimentin expression was observed to be consistent with that observed on treatment with Rg3. Taken together, using the human embryoid model, we found that the two active ginsenosides, Rg3 and Rh2, induce aberrant embryoid body formation and ablate normal EMT.


Asunto(s)
Ginsenósidos , Cadherinas , Cuerpos Embrioides , Transición Epitelial-Mesenquimal , Ginsenósidos/farmacología , Humanos , Vimentina/farmacología
3.
Cancer Lett ; 544: 215803, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35753528

RESUMEN

The importance of methylation in the tumorigenic responses of nonhistone proteins, such as TP53, PTEN, RB1, AKT, and STAT3, has been emphasized in numerous studies. In parallel, the corresponding nonhistone protein methyltransferases have been acknowledged in the pathophysiology of cancer. Thus, this study aimed to explore the pathological role of a nonhistone methyltransferase in gastric cancer (GC), identify nonhistone substrate protein, and understand the underlying mechanism. Interestingly, among the 24 methyltransferases and methyltransferase family 16 (MTF16) proteins, EEF1AKMT3 (METTL21B) expression was prominently lower in GC tissues than in normal adjacent tissues and was associated with a worse prognosis. In addition, EEF1AKMT3-knockdown induced gastric tumor invasiveness and migration. Through gain and loss-of-function studies, mass spectrometry analysis, RNA-seq, and phospho-antibody array, we identified EEF1AKMT3 as a novel tumor-suppressive methyltransferase that catalyzes the monomethylation of MAP2K7 (MKK7) at K296, thereby decreasing the phosphorylation, ubiquitination, and degradation of TP53. Furthermore, EEF1AKMT3, p-MAP2K7, and TP53 protein levels were positively correlated in GC tissues. Collectively, our results delineate the tumor-suppressive function of the EEF1AKMT3/MAP2K7/TP53 signaling axis and suggest the dysregulation of the signaling axis as potential targeted therapy in GC.


Asunto(s)
Neoplasias Gástricas , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , MAP Quinasa Quinasa 7/metabolismo , Metiltransferasas/metabolismo , Invasividad Neoplásica , Neoplasias Gástricas/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
J Ginseng Res ; 46(3): 357-366, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600781

RESUMEN

Background: Withania somnifera (Solanaceae), generally known as Indian ginseng, is a medicinal plant that is used in Ayurvedic practice for promoting health and longevity. This study aims to identify the bioactive metabolites from Indian ginseng and elucidate their structures. Methods: Withanolides were purified by chromatographic techniques, including HPLC coupled with LC/MS. Chemical structures of isolated withanolides were clarified by analyzing the spectroscopic data from 1D and 2D NMR, and HR-ESIMS experiment. Absolute configurations of the withanolides were established by the application of NMR chemical shifts and ECD calculations. Anti-adipogenic activities of isolates were evaluated using 3T3-L1 preadipocytes with Oil Red O staining and quantitative real-time PCR (qPCR). Results: Phytochemical examination of the roots of Indian ginseng afforded to the isolation of six withanolides (1-6), including three novel withanolides, withasilolides G-I (1-3). All the six compounds inhibited adipogenesis and suppressed the enlargement of lipid droplets, compared to those of the control. Additionally, the mRNA expression levels of Fabp4 and Adipsin, the adipocyte markers decreased noticeably following treatment with 25 µM of 1-6. The active compounds (1-6) also promoted lipid metabolism by upregulating the expression of the lipolytic genes HSL and ATGL and downregulating the expression of the lipogenic gene SREBP1. Conclusion: The results of our experimental studies suggest that the withasilolides identified herein have anti-adipogenic potential and can be considered for the development of therapeutic strategies against adipogenesis in obesity. Our study also provides a mechanistic rationale for using Indian ginseng as a potential therapeutic agent against obesity and related metabolic diseases.

5.
Geroscience ; 44(4): 2171-2194, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35357643

RESUMEN

Intermittent fasting (IF) remains the most effective intervention to achieve robust anti-aging effects and attenuation of age-related diseases in various species. Epigenetic modifications mediate the biological effects of several environmental factors on gene expression; however, no information is available on the effects of IF on the epigenome. Here, we first found that IF for 3 months caused modulation of H3K9 trimethylation (H3K9me3) in the cerebellum, which in turn orchestrated a plethora of transcriptomic changes involved in robust metabolic switching processes commonly observed during IF. Second, a portion of both the epigenomic and transcriptomic modulations induced by IF was remarkably preserved for at least 3 months post-IF refeeding, indicating that memory of IF-induced epigenetic changes was maintained. Notably, though, we found that termination of IF resulted in a loss of H3K9me3 regulation of the transcriptome. Collectively, our study characterizes the novel effects of IF on the epigenetic-transcriptomic axis, which controls myriad metabolic processes. The comprehensive analyses undertaken in this study reveal a molecular framework for understanding how IF impacts the metabolo-epigenetic axis of the brain and will serve as a valuable resource for future research.


Asunto(s)
Epigenómica , Transcriptoma , Ayuno , Perfilación de la Expresión Génica , Encéfalo
6.
Exp Mol Med ; 54(3): 324-333, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35338256

RESUMEN

Adiponectin (encoded by Adipoq), a fat-derived hormone, alleviates risk factors associated with metabolic disorders. Although many transcription factors are known to control adiponectin expression, the mechanism underlying its fluctuation with regard to metabolic status remains unclear. Here, we show that ribosomal protein S6 kinase 1 (S6K1) controls adiponectin expression by inducing a transcriptional switch between two transcriptional machineries, BMAL1 and EZH2. Active S6K1 induced a suppressive histone code cascade, H2BS36p-EZH2-H3K27me3, leading to suppression of adiponectin expression. Moreover, active S6K1 phosphorylated BMAL1, an important transcription factor regulating the circadian clock system, at serine 42, which led to its dissociation from the Adipoq promoter region. This response resulted in EZH2 recruitment and subsequent H3K27me3 modification of the Adipoq promoter. Upon fasting, inactivation of S6K1 induced the opposite transcriptional switch, EZH2-to-BMAL1, promoting adiponectin expression. Consistently, S6K1-depleted mice exhibited lower H3K27me3 levels and elevated adiponectin expression. These findings identify a novel epigenetic switch system by which S6K1 controls the production of adiponectin, which displays beneficial effects on metabolism.


Asunto(s)
Factores de Transcripción ARNTL , Adiponectina , Proteína Potenciadora del Homólogo Zeste 2 , Proteínas Quinasas S6 Ribosómicas , Factores de Transcripción ARNTL/genética , Adiponectina/genética , Animales , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación de la Expresión Génica , Código de Histonas , Ratones , Proteínas Quinasas S6 Ribosómicas/metabolismo
7.
Biochem Biophys Res Commun ; 594: 101-108, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35078109

RESUMEN

S6K1 serves as an important signaling regulator of cell proliferation and growth in the mTOR signaling pathway. Excessive activation of the mTOR/S6K1 signaling pathway promotes abnormal cell growth and survival, thereby resulting in tumorigenesis. The roles of S6K1 in protein synthesis and metabolism are well known, but an additional role of S6K1 as a gene transcription regulator has not been much understood. Here, we demonstrated that S6K1 is dynamically distributed in the cytoplasm and nuclei of human cervical cancer cells. S6K1 nuclear localization was serum dependent and serum deprivation or rapamycin treatment inhibited S6K1 Thr389 phosphorylation and, thereby, S6K1 was retained in the cytoplasm. Furthermore, we found that endogenous S6K1 interacted with CREB in the cervical cancer cells. Additionally, S6K1 upregulated the CRE-driven promoter luciferase activity. The proto-oncogene c-JUN, which has several CREs, was attenuated in the S6K1 knockdown cervical cancer cells. The binding of CREB/S6K1 to the c-JUN promoter, altered by serum restimulation, was associated with active epigenetic markers. In HeLa cell, 891 promoter regions, to which S6K1 directly binds, were detected. Our findings suggested that active S6K1, which is dynamically translocated into the nucleus, directly binds to chromatin and could play a role in epigenetic mechanisms or transcription factor recruitment.


Asunto(s)
Núcleo Celular/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transporte Activo de Núcleo Celular , Citoplasma/metabolismo , Epigénesis Genética , Genoma Humano , Genómica , Células HeLa , Humanos , Fosforilación , Regiones Promotoras Genéticas , Elementos de Respuesta , Transducción de Señal , Transcripción Genética
8.
Molecules ; 26(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34577136

RESUMEN

Extensive epigenetic remodeling occurs during the cell fate determination of stem cells. Previously, we discovered that eudesmin regulates lineage commitment of mesenchymal stem cells through the inhibition of signaling molecules. However, the epigenetic modulations upon eudesmin treatment in genomewide level have not been analyzed. Here, we present a transcriptome profiling data showing the enrichment in PRC2 target genes by eudesmin treatment. Furthermore, gene ontology analysis showed that PRC2 target genes downregulated by eudesmin are closely related to Wnt signaling and pluripotency. We selected DKK1 as an eudesmin-dependent potential top hub gene in the Wnt signaling and pluripotency. Through the ChIP-qPCR and RT-qPCR, we found that eudesmin treatment increased the occupancy of PRC2 components, EZH2 and SUZ12, and H3K27me3 level on the promoter region of DKK1, downregulating its transcription level. According to the analysis of GEO profiles, DEGs by depletion of Oct4 showed an opposite pattern to DEGs by eudesmin treatment. Indeed, the expression of pluripotency markers, Oct4, Sox2, and Nanog, was upregulated upon eudesmin treatment. This finding demonstrates that pharmacological modulation of PRC2 dynamics by eudesmin might control Wnt signaling and maintain pluripotency of stem cells.


Asunto(s)
Furanos , Lignanos , Transcriptoma , Diferenciación Celular , Línea Celular , Reposicionamiento de Medicamentos , Histonas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros , Complejo Represivo Polycomb 2 , Vía de Señalización Wnt
9.
Cancer Res ; 81(2): 356-370, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33239431

RESUMEN

The roles of chromatin remodelers and their underlying mechanisms of action in cancer remain unclear. In this study, SMARCB1, known initially as a bona fide tumor suppressor gene, was investigated in liver cancer. SMARCB1 was highly upregulated in patients with liver cancer and was associated with poor prognosis. Loss- and gain-of-function studies in liver cells revealed that SMARCB1 loss led to reduced cell proliferation, wound healing capacity, and tumor growth in vivo. Although upregulated SMARCB1 appeared to contribute to switch/sucrose nonfermentable (SWI/SNF) complex stability and integrity, it did not act using its known pathways antagonism with EZH2 or association between TP53 or AMPK. SMARCB1 knockdown induced a mild reduction in global H3K27 acetylation, and chromatin immunoprecipitation sequencing of SMARCB1 and acetylated histone H3K27 antibodies before and after SMARCB1 loss identified Nucleoporin210 (NUP210) as a critical target of SMARCB1, which bound its enhancer and changed H3K27Ac enrichment and downstream gene expression, particularly cholesterol homeostasis and xenobiotic metabolism. Notably, NUP210 was not only a putative tumor supporter involved in liver cancer but also acted as a key scaffold for SMARCB1 and P300 to chromatin. Furthermore, SMARCB1 deficiency conferred sensitivity to doxorubicin and P300 inhibitor in liver cancer cells. These findings provide insights into mechanisms underlying dysregulation of chromatin remodelers and show novel associations between nucleoporins and chromatin remodelers in cancer. SIGNIFICANCE: This study reveals a novel protumorigenic role for SMARCB1 and describes valuable links between nucleoporins and chromatin remodelers in cancer by identifying NUP210 as a critical coregulator of SMARCB1 chromatin remodeling activity.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Neoplasias Hepáticas/genética , Proteínas de Complejo Poro Nuclear/genética , Proteína SMARCB1/genética , Acetilación , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ontología de Genes , Histonas/metabolismo , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Lisina/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteína SMARCB1/metabolismo , Transducción de Señal/genética
10.
Molecules ; 25(24)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322233

RESUMEN

Obesity causes a wide range of metabolic diseases including diabetes, cardiovascular disease, and kidney disease. Thus, plenty of studies have attempted to discover naturally derived compounds displaying anti-obesity effects. In this study, we evaluated the inhibitory effects of morolic acid 3-O-caffeate (MAOC), extracted from Betula schmidtii, on adipogenesis. Treatment of 3T3-L1 cells with MAOC during adipogenesis significantly reduced lipid accumulation and decreased the expression of adiponectin, a marker of mature adipocytes. Moreover, the treatment with MAOC only during the early phase (day 0-2) sufficiently inhibited adipogenesis, comparable with the inhibitory effects observed following MAOC treatment during the whole processes of adipogenesis. In the early phase of adipogenesis, the expression level of Wnt6, which inhibits adipogenesis, increased by MAOC treatment in 3T3-L1 cells. To identify the gene regulatory mechanism, we assessed alterations in histone modifications upon MAOC treatment. Both global and local levels on the Wnt6 promoter region of histone H3 lysine 4 trimethylation, an active transcriptional histone marker, increased markedly by MAOC treatment in 3T3-L1 cells. Our findings identified an epigenetic event associated with inhibition of adipocyte generation by MAOC, suggesting its potential as an efficient therapeutic compound to cure obesity and metabolic diseases.


Asunto(s)
Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Epigénesis Genética/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Triterpenos/química , Triterpenos/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ratones , Estructura Molecular , Proteínas Proto-Oncogénicas/genética , Proteínas Wnt/genética
11.
Pharmaceuticals (Basel) ; 13(10)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053721

RESUMEN

Rosmarinic acid methyl ester (RAME), a derivative of rosmarinic acid (RA), is reported to have several therapeutic effects, including anti-tumor effects against cervical cancer. However, its anti-tumor effects in ovarian cancer is unclear. In this study, we studied the molecular pathways associated with the anti-tumor effects of RAME in ovarian cancer. To identify the effects of RAME in ovarian cancer, RNA sequencing was performed in RAME-treated ovarian cancer cells; we found that RAME treatment downregulated the genes closely involved with the target genes of the transcription factor Forkhead box M1 (FOXM1). It was reported that FOXM1 is overexpressed in a variety of cancer cells and is associated with cell proliferation and tumorigenesis. Therefore, we hypothesized that FOXM1 is a key target of RAME; this could result in its anti-tumor effects. Treatment of ovarian cancer cells with RAME-inhibited cell migration and invasion, as shown by wound healing and transwell migration assays. To examine whether RAME represses the action of FOXM1, we performed quantitative RT-PCR and ChIP-qPCR. Treatment of ovarian cancer cells with RAME decreased the mRNA expression of FOXM1 target genes and the binding of FOXM1 to its target genes. Moreover, FOXM1 expression was increased in cisplatin-resistant ovarian cancer cells, and combination treatment with RAME and cisplatin sensitized the cisplatin-resistant ovarian cancer cells, which was likely due to FOXM1 inhibition. Our research suggests that RAME is a promising option in treating ovarian cancer patients, as it revealed a novel molecular pathway underlying its anti-tumor effects.

12.
Viruses ; 12(9)2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911874

RESUMEN

Since the global outbreak of SARS-CoV-2 (COVID-19), infections of diverse human organs along with multiple symptoms continue to be reported. However, the susceptibility of the brain to SARS-CoV-2, and the mechanisms underlying neurological infection are still elusive. Here, we utilized human embryonic stem cell-derived brain organoids and monolayer cortical neurons to investigate infection of brain with pseudotyped SARS-CoV-2 viral particles. Spike-containing SARS-CoV-2 pseudovirus infected neural layers within brain organoids. The expression of ACE2, a host cell receptor for SARS-CoV-2, was sustained during the development of brain organoids, especially in the somas of mature neurons, while remaining rare in neural stem cells. However, pseudotyped SARS-CoV-2 was observed in the axon of neurons, which lack ACE2. Neural infectivity of SARS-CoV-2 pseudovirus did not increase in proportion to viral load, but only 10% of neurons were infected. Our findings demonstrate that brain organoids provide a useful model for investigating SARS-CoV-2 entry into the human brain and elucidating the susceptibility of the brain to SARS-CoV-2.


Asunto(s)
Betacoronavirus/fisiología , Neuronas/virología , Organoides/virología , Prosencéfalo/virología , Glicoproteína de la Espiga del Coronavirus/fisiología , Enzima Convertidora de Angiotensina 2 , Axones/enzimología , Diferenciación Celular , Células Cultivadas , Corteza Cerebral/citología , Células Madre Embrionarias/virología , Células HEK293 , Humanos , Proteínas del Tejido Nervioso/fisiología , Células-Madre Neurales/enzimología , Células-Madre Neurales/virología , Neuronas/enzimología , Peptidil-Dipeptidasa A/fisiología , Prosencéfalo/citología , Receptores Virales/fisiología , SARS-CoV-2 , Carga Viral , Tropismo Viral , Internalización del Virus
13.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825184

RESUMEN

Cisplatin is the most frequently used agent for chemotherapy against cervical cancer. However, recurrent use of cisplatin induces resistance, representing a major hurdle in the treatment of cervical cancer. Our previous study revealed that HP1γ suppresses UBE2L3, an E2 ubiquitin conjugating enzyme, thereby enhancing the stability of tumor suppressor p53 specifically in cervical cancer cells. As a follow-up study of our previous findings, here we have identified that the pharmacological substances, leptomycin B and doxorubicin, can improve the sensitivity of cervical cancer cells to cisplatin inducing HP1γ-mediated elevation of p53. Leptomycin B, which inhibits the nuclear export of HP1γ, increased cisplatin-dependent apoptosis induction by promoting the activation of p53 signaling. We also found that doxorubicin, which induces the DNA damage response, promotes HP1γ-mediated silencing of UBE2L3 and increases p53 stability. These effects resulted from the nuclear translocation and binding of HP1γ on the UBE2L3 promoter. Doxorubicin sensitized the cisplatin-resistant cervical cancer cells, enhancing their p53 levels and rate of apoptosis when administered together with cisplatin. Our findings reveal a therapeutic strategy to target a specific molecular pathway that contributes to p53 degradation for the treatment of patients with cervical cancer, particularly with cisplatin resistance.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cisplatino/toxicidad , Resistencia a Antineoplásicos , Enzimas Ubiquitina-Conjugadoras/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Apoptosis/efectos de los fármacos , Doxorrubicina/farmacología , Sinergismo Farmacológico , Ácidos Grasos Insaturados/farmacología , Femenino , Células HeLa , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética
14.
Arch Pharm Res ; 43(9): 877-889, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32761309

RESUMEN

Stem cells are characterized by self-renewal and by their ability to differentiate into cells of various organs. With massive progress in 2D and 3D cell culture techniques, in vitro generation of various types of such organoids from patient-derived stem cells is now possible. As in vitro differentiation protocols are usually made to resemble human developmental processes, organogenesis of patient-derived stem cells can provide key information regarding a range of developmental diseases. Human stem cell-based in vitro modeling as opposed to using animal models can particularly benefit the evaluation of neurological diseases because of significant differences in structure and developmental processes between the human and the animal brain. This review focuses on stem cell-based in vitro modeling of neurodevelopmental disorders, more specifically, the fundamentals and technical advancements in monolayer neuron and brain organoid cultures. Furthermore, we discuss the drawbacks of the conventional culture method and explore the advanced, cutting edge 3D organoid models for several neurodevelopmental diseases, including genetic diseases such as Down syndrome, Rett syndrome, and Miller-Dieker syndrome, as well as brain malformations like macrocephaly and microcephaly. Finally, we discuss the limitations of the current organoid techniques and some potential solutions that pave the way for accurate modeling of neurological disorders in a dish.


Asunto(s)
Encéfalo/citología , Técnicas de Cultivo de Célula/métodos , Malformaciones del Desarrollo Cortical de Grupo I/patología , Trastornos del Neurodesarrollo/patología , Neuronas/fisiología , Animales , Encéfalo/patología , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Malformaciones del Desarrollo Cortical de Grupo I/genética , Ratones , Trastornos del Neurodesarrollo/genética , Neurogénesis/genética , Neuronas/patología , Neuronas/trasplante , Organoides/patología , Organoides/fisiología , Quimera por Trasplante
15.
Molecules ; 25(14)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650569

RESUMEN

The pharmacological effects of BST204-a fermented ginseng extract-on several types of cancers have been reported. However, the effects of ginseng products or single ginsenosides against cancer stem cells are still poorly understood. In this study, we identified the anti-tumorigenic and anti-invasive activities of BST204 through the suppression of the cancer stem cell marker, CD133. The treatment of embryonic carcinoma cells with BST204 induced the expression of the tumor suppressor protein, p53, which decreased the expression of cell cycle regulatory proteins and downregulated the expression of CD133 and several stemness transcription factors. These changes resulted in both the inhibition of tumor cell proliferation and tumorigenesis. The knockdown of CD133 suggests that it has a role in tumorigenesis, but not in cancer cell proliferation or cell cycle arrest. Treatment with BST204 resulted in the reduced expression of the mesenchymal marker, N-cadherin, and the increased expression of the epithelial marker, E-cadherin, leading to the suppression of tumor cell migration and invasion. The knockdown of CD133 also exhibited an anti-invasive effect, indicating the role of CD133 in tumor invasion. The single ginsenosides Rg3 and Rh2-major components of BST204-exhibited limited effects against cancer stem cells compared to BST204, suggesting possible synergism among several ginsenoside compounds.


Asunto(s)
Carcinogénesis , Carcinoma Embrionario , Movimiento Celular/efectos de los fármacos , Células Madre Neoplásicas , Extractos Vegetales/farmacología , Antígeno AC133/biosíntesis , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma Embrionario/tratamiento farmacológico , Carcinoma Embrionario/metabolismo , Carcinoma Embrionario/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteína p53 Supresora de Tumor/biosíntesis
16.
Cells ; 9(5)2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32422978

RESUMEN

In this study, we investigated the functional role of isoprenylcysteine carboxyl methyltransferase (ICMT) and its methylatable substrate Ras in Toll-like receptor (TLR)-activated macrophages and in mouse inflammatory disease conditions. ICMT and RAS expressions were strongly increased in macrophages under the activation conditions of TLRs by lipopolysaccharide (LPS, a TLR4 ligand), pam3CSK (TLR2), or poly(I:C) (TLR3) and in the colons, stomachs, and livers of mice with colitis, gastritis, and hepatitis. The inhibition and activation of ICMT and Ras through genetic and pharmacological approaches significantly affected the activation of interleukin-1 receptor-associated kinase (IRAK)s, tumor necrosis factor receptor associated factor 6 (TRAF6), transforming growth factor-ß-activated kinase 1 (TAK1), mitogen-activated protein kinase (MAPK), and MAPK kinases (MAPKKs); translocation of the AP-1 family; and the expressions of inflammation-related genes that depend on both MyD88 and TRIF. Interestingly, the Ras/ICMT-mediated inflammatory reaction critically depends on the TIR domains of myeloid differentiation primary response 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-ß (TRIF). Taken together, these results suggest that ICMT and its methylated Ras play important roles in the regulation of inflammatory responses through cooperation with the TIR domain of adaptor molecules.


Asunto(s)
Inflamación/enzimología , Proteína Metiltransferasas/metabolismo , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Inflamación/patología , Sistema de Señalización de MAP Quinasas , Activación de Macrófagos , Macrófagos/enzimología , Masculino , Metilación , Ratones , Modelos Biológicos , Factor 88 de Diferenciación Mieloide/metabolismo , Células RAW 264.7 , Especificidad por Sustrato , Factor de Transcripción AP-1/metabolismo , Proteínas ras/metabolismo
17.
Cell Death Differ ; 27(9): 2537-2551, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32203172

RESUMEN

E6 oncoprotein derived from high-risk human papillomavirus (HPV) drives the development of cervical cancer through p53 degradation. Because cervical cancer therapies to inactivate HPV or E6 protein are not available, alternative strategies are required. Here, we show that HPV-mediated nuclear export of human heterochromatin protein 1γ (HP1γ) reduces the stability of p53 through UBE2L3-mediated p53 polyubiquitination during cervical cancer progression. In general, HP1 plays a key role in heterochromatin formation and transcription in the nucleus. However, our immunostaining data showed that the majority of HP1γ is localized in the cytoplasm in HPV-mediated cervical cancer. We found that HPV E6 protein drives unusual nuclear export of HP1γ through the interaction between the NES sequence of HP1γ and exportin-1. The mutation of the NES sequence in HP1γ led to nuclear retention of HP1γ and reduced cervical cancer cell growth and tumor generation. We further discovered that HP1γ directly suppresses the expression of UBE2L3 which drives E6-mediated proteasomal degradation of p53 in cervical cancer. Downregulation of UBE2L3 by overexpression of HP1γ suppressed UBE2L3-dependent p53 degradation-promoting apoptosis of cervical cancer cells. Our findings propose a useful strategy to overcome p53 degradation in cervical cancer through the blockage of nuclear export of HP1γ.


Asunto(s)
Carcinogénesis/patología , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación hacia Abajo/genética , Proteínas Oncogénicas Virales/metabolismo , Proteínas Represoras/metabolismo , Proteína p53 Supresora de Tumor/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Transporte Activo de Núcleo Celular , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Doxiciclina/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Carioferinas/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Isoformas de Proteínas/metabolismo , Proteolisis , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Riesgo , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Proteína Exportina 1
18.
J Ginseng Res ; 44(1): 58-66, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32148390

RESUMEN

BACKGROUND: The biological and pharmacological effects of BST204, a fermented ginseng extract, have been reported in various disease conditions. However, its molecular action in metabolic disease remains poorly understood. In this study, we identified the antiadipogenic activity of BST204 resulting from its inhibition of the S6 kinase 1 (S6K1) signaling pathway. METHODS: The inhibitory effects of BST204 on S6K1 signaling were investigated by immunoblot, nuclear fractionation, immunoprecipitation analyses. The antiadipogenic effect of BST204 was evaluated by measuring mRNA levels of adipogenic genes and by chromatin immunoprecipitation and quantitative real-time polymerase chain reaction analysis. RESULTS: Treatment with BST204 inhibited activation and nuclear translocation of S6K1, further decreasing the interaction between S6K1 and histone H2B in 10T1/2 mesenchymal stem cells. Subsequently, phosphorylation of H2B at serine 36 (H2BS36p) by S6K1 was reduced by BST204, inducing an increase in the mRNA expression of Wnt6, Wnt10a, and Wnt10b, which disturbed adipogenic differentiation and promoted myogenic and early osteogenic gene expression. Consistently, BST204 treatment during adipogenic commitment suppressed the expression of adipogenic marker genes and lipid drop formation. CONCLUSION: Our results indicate that BST204 blocks adipogenesis of mesenchymal stem cells through the inhibition of S6K1-mediated histone phosphorylation. This study suggests the potential therapeutic strategy using BST204 to combat obesity and musculoskeletal diseases.

19.
Nutrients ; 12(2)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046061

RESUMEN

Ginsenoside Rg3, one of the major components in Panax ginseng, has been reported to possess several therapeutic effects including anti-obesity properties. However, its effect on the browning of mature white adipocytes as well as the underlying mechanism remains poorly understood. In this study, we suggested a novel role of Rg3 in the browning of mature 3T3-L1 adipocytes by upregulating browning-related gene expression. The browning effects of Rg3 on differentiated 3T3-L1 adipocytes were evaluated by analyzing browning-related markers using quantitative PCR, immunoblotting, and immunostaining. In addition, the size and sum area of lipid droplets in differentiated 3T3-L1 adipocytes were measured using Oil-Red-O staining. In mature 3T3-L1 adipocytes, Rg3 dose-dependently induced the expression of browning-related genes such as Ucp1, Prdm16, Pgc1α, Cidea, and Dio2. Moreover, Rg3 induced the expression of beige fat-specific genes (CD137 and TMEM26) and lipid metabolism-associated genes (FASN, SREBP1, and MCAD), which indicated the activation of lipid metabolism by Rg3. We also demonstrated that activation of 5' adenosine monophosphate-activated protein kinase (AMPK) is required for Rg3-mediated up-regulation of browning gene expression. Moreover, Rg3 inhibited the accumulation of lipid droplets and reduced the droplet size in mature 3T3-L1 adipocytes. Taken together, this study identifies a novel role of Rg3 in browning of white adipocytes, as well as suggesting a potential mechanism of an anti-obesity effect of Panax ginseng.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Ginsenósidos/farmacología , Transducción de Señal/efectos de los fármacos , Células 3T3-L1 , Adipocitos Blancos/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Expresión Génica/efectos de los fármacos , Ginsenósidos/aislamiento & purificación , Metabolismo de los Lípidos/genética , Ratones , Panax/química , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
20.
Genes (Basel) ; 11(1)2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878002

RESUMEN

Vulpinic acid, a naturally occurring methyl ester of pulvinic acid, has been reported to exert anti-fungal, anti-cancer, and anti-oxidative effects. However, its metabolic action has not been implicated yet. Here, we show that vulpinic acid derived from a mushroom, Pulveroboletus ravenelii controls the cell fate of mesenchymal stem cells and preadipocytes by inducing the acetylation of histone H3 and α-tubulin, respectively. The treatment of 10T1/2 mesenchymal stem cells with vulpinic acid increased the expression of Wnt6, Wnt10a, and Wnt10b, which led to osteogenesis inhibiting the adipogenic lineage commitment, through the upregulation of H3 acetylation. By contrast, treatment with vulpinic acid promoted the terminal differentiation of 3T3-L1 preadipocytes into mature adipocytes. In this process, the increase in acetylated tubulin was accompanied, while acetylated H3 was not altered. As excessive generation of adipocytes occurs, the accumulation of lipid drops was not concentrated, but dispersed into a number of adipocytes. Consistently, the expressions of lipolytic genes were upregulated and inflammatory factors were downregulated in adipocytes exposed to vulpinic acid during adipogenesis. These findings reveal the multiple actions of vulpinic acid in two stages of differentiation, promoting the osteogenesis of mesenchymal stem cells and decreasing hypertrophic adipocytes, which can provide experimental evidence for the novel metabolic advantages of vulpinic acid.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Furanos/farmacología , Fenilacetatos/farmacología , Células Madre/efectos de los fármacos , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis/fisiología , Animales , Furanos/metabolismo , Lipólisis/fisiología , Células Madre Mesenquimatosas , Ratones , Osteogénesis/fisiología , Fenilacetatos/metabolismo , Transducción de Señal , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA