Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
2.
BMC Neurol ; 24(1): 332, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256684

RESUMEN

BACKGROUND: Accurately predicting the walking independence of stroke patients is important. Our objective was to determine and compare the performance of logistic regression (LR) and three machine learning models (eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and Random Forest (RF)) in predicting walking independence at discharge in stroke patients, as well as to explore the variables that predict prognosis. METHODS: 778 (80% for the training set and 20% for the test set) stroke patients admitted to China Rehabilitation Research Center between February 2020 and January 2023 were retrospectively included. The training set was used for training models. The test set was used to validate and compare the performance of the four models in terms of area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F1 score. RESULTS: Among the three ML models, the AUC of the XGBoost model is significantly higher than that of the SVM and RF models (P < 0.001, P = 0.024, respectively). There was no significant difference in the AUCs between the XGBoost model and the LR model (0.891 vs. 0.880, P = 0.560). The XGBoost model demonstrated superior accuracy (87.82% vs. 86.54%), sensitivity (50.00% vs. 39.39%), PPV (73.68% vs. 73.33%), NPV (89.78% vs. 87.94%), and F1 score (59.57% vs. 51.16%), with only slightly lower specificity (96.09% vs. 96.88%). Together, the XGBoost model and the stepwise LR model identified age, FMA-LE at admission, FAC at admission, and lower limb spasticity as key factors influencing independent walking. CONCLUSION: Overall, the XGBoost model performed best in predicting independent walking after stroke. The XGBoost and LR models together confirm that age, admission FMA-LE, admission FAC, and lower extremity spasticity are the key factors influencing independent walking in stroke patients at hospital discharge. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Aprendizaje Automático , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Caminata , Humanos , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/diagnóstico , Anciano , Caminata/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Máquina de Vectores de Soporte , Pronóstico , Valor Predictivo de las Pruebas , Adulto
3.
Cell Signal ; 123: 111372, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39209221

RESUMEN

BACKGROUND: Intestinal damage is a common and serious complication in patients with graft-versus-host disease (GVHD). Human placental mesenchymal stromal cells (hPMSCs) ameliorate GVHD tissue damage by exerting anti-oxidative effects; however, the underlying mechanisms remain not fully clear. METHODS: A GVHD mouse model and tumor necrosis factor-α (TNF-α)-stimulated human colon epithelial cell lines NCM460 and HT-29 cells were used to investigate the mechanisms of hPMSCs alleviating GVHD-induced intestinal oxidative damage. RESULTS: hPMSCs reduced TNF-α concentrations and the number of CD3+TNF-α+ T-cells, which were negatively correlated with the expression of claudin-1, occludin, and ZO-1, through CD73 in the colon tissue of GVHD mice. Meanwhile, hPMSCs reduced the mean fluorescence intensity (MFI) of reactive oxygen species (ROS) and the concentration of malondialdehyde (MDA), promoted superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, as well as claudin-1, occludin, and ZO-1 expression, in colonic epithelial cells of GVHD mice and TNF-α-stimulated cells via CD73. Moreover, hPMSCs upregulated adenosine (ADO) concentrations in GVHD mice and TNF-α-stimulated cells and mitigated the loss of tight junction proteins via the CD73/ADO/ADO receptors. Further analysis showed that hPMSCs diminished Fyn expression and enhanced Nrf2, GCLC, and HO-1 expression in both TNF-α-stimulated cells and colonic epithelial cells of GVHD mice by activating PI3K/Akt/GSK-3ß pathway. CONCLUSIONS: The results suggested that hPMSC-mediated redox metabolism balance and promoted tight junction protein expression were achieved via CD73/ADO/PI3K/Akt/GSK-3ß/Fyn/Nrf2 axis, by which alleviating intestinal oxidative injury in GVHD mice.


Asunto(s)
5'-Nucleotidasa , Adenosina , Glucógeno Sintasa Quinasa 3 beta , Enfermedad Injerto contra Huésped , Células Madre Mesenquimatosas , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Placenta , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Femenino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedad Injerto contra Huésped/metabolismo , Enfermedad Injerto contra Huésped/patología , Ratones , Células Madre Mesenquimatosas/metabolismo , Adenosina/metabolismo , Embarazo , 5'-Nucleotidasa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Placenta/metabolismo , Transducción de Señal , Intestinos/patología , Ratones Endogámicos BALB C
4.
Int Immunopharmacol ; 138: 112554, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38968861

RESUMEN

BACKGROUND: Human placental mesenchymal stromal cells (hPMSCs) are known to limit graft-versus-host disease (GVHD). CD8+CD122+PD-1+Tregs have been shown to improve the survival of GVHD mice. However, the regulatory roles of hPMSCs in this subgroup remain unclear. Here, the regulatory mechanism of hPMSCs in reducing liver fibrosis in GVHD mice by promoting CD8+CD122+PD-1+Tregs formation and controlling the balance of IL-6 and IL-10 were explored. METHODS: A GVHD mouse model was constructed using C57BL/6J and BALB/c mice and treated with hPMSCs. LX-2 cells were explored to study the effects of IL-6 and IL-10 on the activation of hepatic stellate cells (HSCs). The percentage of CD8+CD122+PD-1+Tregs and IL-10 secretion were determined using FCM. Changes in hepatic tissue were analysed by HE, Masson, multiple immunohistochemical staining and ELISA, and the effects of IL-6 and IL-10 on LX-2 cells were detected using western blotting. RESULTS: hPMSCs enhanced CD8+CD122+PD-1+Treg formation via the CD73/Foxo1 and promoted IL-10, p53, and MMP-8 levels, but inhibited IL-6, HLF, α-SMA, Col1α1, and Fn levels in the liver of GVHD mice through CD73. Positive and negative correlations of IL-6 and IL-10 between HLF were found in liver tissue, respectively. IL-6 upregulated HLF, α-SMA, and Col1α1 expression via JAK2/STAT3 pathway, whereas IL-10 upregulated p53 and inhibited α-SMA and Col1α1 expression in LX-2 cells by activating STAT3. CONCLUSIONS: hPMSCs promoted CD8+CD122+PD-1+Treg formation and IL-10 secretion but inhibited HSCs activation and α-SMA and Col1α1 expression by CD73, thus controlling the balance of IL-6 and IL-10, and alleviating liver injury in GVHD mice.


Asunto(s)
Proteína Forkhead Box O1 , Enfermedad Injerto contra Huésped , Células Madre Mesenquimatosas , Linfocitos T Reguladores , Animales , Femenino , Humanos , Ratones , Embarazo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Modelos Animales de Enfermedad , Proteína Forkhead Box O1/metabolismo , Enfermedad Injerto contra Huésped/inmunología , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/inmunología , Interleucina-10/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Interleucina-6/metabolismo , Hígado/patología , Hígado/inmunología , Hígado/metabolismo , Cirrosis Hepática/inmunología , Cirrosis Hepática/terapia , Cirrosis Hepática/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Placenta/citología , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
5.
Int Immunopharmacol ; 139: 112689, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39029234

RESUMEN

BACKGROUND: Oxidative stress is increased in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients and leads to the development of graft versus host disease (GVHD). Mesenchymal stromal cells (MSCs) can ameliorate GVHD by regulating the function of T cells. However, whether MSCs can modulate erythrocyte antioxidant metabolism and thus reduce GVHD is not known. METHODS: Forty female BALB/c mice were randomly assigned to four groups: the control, GVHDhigh, hPMSC, and PBS groups. A hypoxanthine/xanthine oxidase system was used to steadily and gradually produce superoxide in an in vitro experiment. A scanning microscope was used to examine the ultrastructure of erythrocytes. Laser diffraction analyses were used to analyze erythrocyte deformability. Western blotting was used to measure the expression of the erythrocyte membrane skeleton proteins Band 3 and ß-Spectrin. Corresponding kits were used to assess the levels of oxidative damage and the activity of antioxidant enzymes. RESULTS: Morphological and deformability defects were significantly increased in erythrocytes from GVHD patients. Band 3 and ß-Spectrin expression was also reduced in GVHD patients and model mice. Furthermore, we observed significantly increased oxidative stress-induce injury and decreased antioxidant capability in erythrocytes from both GVHD patients and model mice. Subsequent research showed that human placenta-derived MSC (hPMSC) therapy decreased the GVHD-induced redox imbalance in erythrocytes. Furthermore, our findings suggested that upregulating glucose metabolism promoted both the de novo synthesis and recycling of GSH, which is the primary mechanism by which hPMSCs mediate the increase in antioxidant capacity in erythrocytes. CONCLUSION: Together, our findings suggest that hPMSCs can increase antioxidant capacity by increasing erythrocyte GSH production and thus ameliorate GVHD.


Asunto(s)
Eritrocitos , Glutatión , Enfermedad Injerto contra Huésped , Células Madre Mesenquimatosas , Ratones Endogámicos BALB C , Estrés Oxidativo , Animales , Femenino , Eritrocitos/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Glutatión/metabolismo , Ratones , Placenta/metabolismo , Embarazo , Trasplante de Células Madre Mesenquimatosas , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Adulto , Células Cultivadas , Persona de Mediana Edad , Deformación Eritrocítica , Modelos Animales de Enfermedad
6.
J Alzheimers Dis ; 100(3): 999-1015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968051

RESUMEN

Background: The current application effects of computerized cognitive intervention are inconsistent and limited to hospital rehabilitation settings. Objective: To investigate the effect of mobile intelligent cognitive training (MICT) on patients with post-stroke cognitive impairment (PSCI). Methods: This study was a multicenter, prospective, open-label, blinded endpoint, cluster-randomized controlled trial (RCT). 518 PSCI patients were stratified and assigned to four rehabilitation settings, and then patients were randomized into experimental and control groups in each rehabilitation setting through cluster randomization. All patients received comprehensive management for PSCI, while the experimental group additionally received MICT intervention. Treatment was 30 minutes daily, 5 days per week, for 12 weeks. Cognitive function, activities of daily living (ADL), and quality of life (QOL) were assessed before the treatment, at weeks 6 and 12 post-treatment, and a 16-week follow-up. Results: Linear Mixed Effects Models showed patients with PSCI were better off than pre-treatment patients on each outcome measure (p < 0.05). Additionally, the improvement of these outcomes in the experimental group was significantly better than in the control group at week 6 post-treatment and 16-week follow-up (p < 0.05). The rehabilitation setting also affected the cognitive efficacy of MICT intervention in improving PSCI patients, and the degree of improvement in each outcome was found to be highest in hospital, followed by community, nursing home, and home settings. Conclusions: Long-term MICT intervention can improve cognition, ADL, and QOL in patients with PSCI, with sustained effects for at least one month. Notably, different rehabilitation settings affect the cognitive intervention efficacy of MICT on PSCI patients. However, this still needs to be further determined in future studies.


Asunto(s)
Actividades Cotidianas , Disfunción Cognitiva , Entrenamiento Cognitivo , Calidad de Vida , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia Cognitivo-Conductual/métodos , Disfunción Cognitiva/rehabilitación , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Entrenamiento Cognitivo/métodos , Estudios Prospectivos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/psicología , Rehabilitación de Accidente Cerebrovascular/métodos , Resultado del Tratamiento
7.
Drugs ; 84(8): 953-967, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38937394

RESUMEN

BACKGROUND AND OBJECTIVE: Although paracetamol (acetaminophen) combined with other analgesics can reduce pain intensity in some pain conditions, its effectiveness in managing low back pain and osteoarthritis is unclear. This systematic review investigated whether paracetamol combination therapy is more effective and safer than monotherapy or placebo in low back pain and osteoarthritis. METHODS: Online database searches were conducted for randomised trials that evaluated paracetamol combined with another analgesic compared to a placebo or the non-paracetamol ingredient in the combination (monotherapy) in low back pain and osteoarthritis. The primary outcome was a change in pain. Secondary outcomes were (serious) adverse events, changes in disability and quality of life. Follow-up was immediate (≤ 2 weeks), short (> 2 weeks but ≤ 3 months), intermediate (> 3 months but < 12 months) or long term (≥ 12 months). A random-effects meta-analysis was conducted. Risk of bias was assessed using the original Cochrane tool, and quality of evidence using Grading of Recommendations Assessment, Development and Evaluation (GRADE). RESULTS: Twenty-two studies were included. Pain was reduced with oral paracetamol plus a non-steroidal anti-inflammatory drug (NSAID) at immediate term in low back pain (paracetamol plus ibuprofen vs ibuprofen [mean difference (MD) - 6.2, 95% confidence interval (CI) -10.4 to -2.0, moderate evidence]) and in osteoarthritis (paracetamol plus aceclofenac vs aceclofenac [MD - 4.7, 95% CI - 8.3 to - 1.2, moderate certainty evidence] and paracetamol plus etodolac vs etodolac [MD - 15.1, 95% CI - 18.5 to - 11.8; moderate certainty evidence]). Paracetamol plus oral tramadol reduced pain compared with placebo at intermediate term for low back pain (MD - 11.7, 95% CI - 19.2 to - 4.3; very low certainty evidence) and osteoarthritis (MD - 6.8, 95% CI - 12.7 to -0.9; moderate certainty evidence). Disability scores improved in half the comparisons. Quality of life was infrequently measured. All paracetamol plus NSAID combinations did not increase the risk of adverse events compared to NSAID monotherapy. CONCLUSIONS: Low-to-moderate quality evidence supports the oral use of some paracetamol plus NSAID combinations for short-term pain relief with no increased risk of harm for low back pain and osteoarthritis compared to its non-paracetamol monotherapy comparator.


Asunto(s)
Acetaminofén , Analgésicos no Narcóticos , Antiinflamatorios no Esteroideos , Dolor de la Región Lumbar , Osteoartritis , Humanos , Acetaminofén/administración & dosificación , Acetaminofén/efectos adversos , Analgésicos no Narcóticos/administración & dosificación , Analgésicos no Narcóticos/efectos adversos , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/efectos adversos , Quimioterapia Combinada/métodos , Ibuprofeno/administración & dosificación , Ibuprofeno/efectos adversos , Dolor de la Región Lumbar/tratamiento farmacológico , Osteoartritis/tratamiento farmacológico , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Administración Oral
8.
Front Neurol ; 15: 1348862, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725649

RESUMEN

Background: Post-stroke aphasia (PSA) is one of the most devastating symptoms after stroke, yet limited treatment options are available. Prolonged intermittent theta burst stimulation (piTBS) is a promising therapy for PSA. However, its efficacy remains unclear. Therefore, we aim to investigate the efficacy of piTBS over the left supplementary motor area (SMA) in improving language function for PSA patients and further explore the mechanism of language recovery. Methods: This is a randomized, double-blinded, sham-controlled trial. A total of 30 PSA patients will be randomly allocated to receive either piTBS stimulation or sham stimulation for 15 sessions over a period of 3 weeks. The primary outcome is the Western Aphasia Battery Revised (WAB-R) changes after treatment. The secondary outcomes include The Stroke and Aphasia Quality of Life Scale (SAQOL-39 g), resting-state electroencephalogram (resting-state EEG), Event-related potentials (ERP), brain derived neurotrophic factor (BDNF). These outcome measures are assessed before treatment, after treatment, and at 4-weeks follow up. This study was registered in Chinese Clinical Trial Registry (No. ChiCTR23000203238). Discussion: This study protocol is promising for improving language in PSA patients. Resting-state EEG, ERP, and blood examination can be used to explore the neural mechanisms of PSA treatment with piTBS. Clinical trial registration: https://www.chictr.org.cn/index.html, ChiCTR2300074533.

9.
Front Psychiatry ; 15: 1364858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716113

RESUMEN

The hippocampus is one of the brain areas affected by autism spectrum disorder (ASD). Individuals with ASD typically have impairments in hippocampus-dependent learning, memory, language ability, emotional regulation, and cognitive map creation. However, the pathological changes in the hippocampus that result in these cognitive deficits in ASD are not yet fully understood. In the present review, we will first summarize the hippocampal involvement in individuals with ASD. We will then provide an overview of hippocampal structural and functional abnormalities in genetic, environment-induced, and idiopathic animal models of ASD. Finally, we will discuss some pharmacological and non-pharmacological interventions that show positive impacts on the structure and function of the hippocampus in animal models of ASD. A further comprehension of hippocampal aberrations in ASD might elucidate their influence on the manifestation of this developmental disorder and provide clues for forthcoming diagnostic and therapeutic innovation.

10.
J Alzheimers Dis ; 98(1): 109-117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38363609

RESUMEN

Background: The mechanism(s) of cognitive impairment remains complex, making it difficult to confirm the factors influencing poststroke cognitive impairment (PSCI). Objective: This study quantitatively investigated the degree of influence and interactions of clinical indicators of PSCI. Methods: Information from 270 patients with PSCI and their Wechsler Adult Intelligence Scale (WAIS-RC) scores, totaling 18 indicators, were retrospectively collected. Correlations between the indicators and WAIS scores were calculated. Multiple linear regression model(MLR), genetic algorithm modified Back-Propagation neural network(GA-BP), logistic regression model (LR), XGBoost model (XGB), and structural equation model were used to analyze the degree of influence of factors on the WAIS and their mediating effects. Results: Seven indicators were significantly correlated with the WAIS scores: education, lesion side, aphasia, frontal lobe, temporal lobe, diffuse lesions, and disease course. The MLR showed significant effect of education, lesion side, aphasia, diffuse lesions, and frontal lobe on the WAIS. The GA-BP included five factors: education, aphasia, frontal lobe, temporal lobe, and diffuse lesions. LR predicted that the lesion side contributed more to mild cognitive impairment, while education, lesion side, aphasia, and course of the disease contributed more to severe cognitive impairment. XGB showed that education, side of the lesion, aphasia, and diffuse lesions contributed the most to PSCI. Aphasia plays a significant mediating role in patients with severe PSCI. Conclusions: Education, lesion side, aphasia, frontal lobe, and diffuse lesions significantly affected PSCI. Aphasia is a mediating variable between clinical information and the WAIS in patients with severe PSCI.


Asunto(s)
Afasia , Disfunción Cognitiva , Accidente Cerebrovascular , Humanos , Estudios Retrospectivos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/psicología , Cognición , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/psicología , Inteligencia
11.
Inflammation ; 47(1): 244-263, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37833615

RESUMEN

Mesenchymal stem cells (MSCs) ameliorate graft-versus-host disease (GVHD)-induced tissue damage by exerting immunosuppressive effects. However, the related mechanism remains unclear. Here, we explored the therapeutic effect and mechanism of action of human placental-derived MSCs (hPMSCs) on GVHD-induced mouse liver tissue damage, which shows association with inflammatory responses, fibrosis accompanied by hepatocyte tight junction protein loss, the upregulation of Bax, and the downregulation of Bcl-2. It was observed in GVHD mice and Th1 cell differentiation system that hPMSCs treatment increased IL-10 levels and decreased TNF-α levels in the Th1 subsets via CD73. Moreover, hPMSCs treatment reduced tight junction proteins loss and inhibited hepatocyte apoptosis in the livers of GVHD mice via CD73. ADO level analysis in GVHD mice and the Th1 cell differentiation system showed that hPMSCs could also upregulate ADO levels via CD73. Moreover, hPMSCs enhanced Nrf2 expression and diminished Fyn expression via the CD73/ADO pathway in Th1, TNF-α+, and IL-10+ cells. These results indicated that hPMSCs promoted and inhibited the secretion of IL-10 and TNF-α, respectively, during Th1 cell differentiation through the CD73/ADO/Fyn/Nrf2 axis signaling pathway, thereby alleviating liver tissue injury in GVHD mice.


Asunto(s)
Enfermedad Injerto contra Huésped , Interleucina-10 , Embarazo , Humanos , Femenino , Animales , Ratones , Interleucina-10/metabolismo , Células TH1/metabolismo , Factor de Necrosis Tumoral alfa , Placenta/metabolismo , Factor 2 Relacionado con NF-E2 , Hígado/metabolismo
12.
Neurol Sci ; 45(3): 897-909, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37880452

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) has been widely used in motor rehabilitation after stroke, and functional magnetic resonance imaging (fMRI) has been used to investigate the neural mechanisms of motor recovery during stroke therapy. However, there is no review on the mechanism of rTMS intervention for motor recovery after stroke based on fMRI explicitly. We aim to reveal and summarize the neural mechanism of the effects of rTMS on motor function after stroke as measured by fMRI. We carefully performed a literature search using PubMed, EMBASE, Web of Science, and Cochrane Library databases from their respective inceptions to November 2022 to identify any relevant randomized controlled trials. Researchers independently screened the literature, extracted data, and qualitatively described the included studies. Eleven studies with a total of 420 poststroke patients were finally included in this systematic review. A total of 338 of those participants received fMRI examinations before and after rTMS intervention. Five studies reported the effects of rTMS on activation of brain regions, and four studies reported results related to brain functional connectivity (FC). Additionally, five studies analyzed the correlation between fMRI and motor evaluation. The neural mechanism of rTMS in improving motor function after stroke may be the activation and FCs of motor-related brain areas, including enhancement of the activation of motor-related brain areas in the affected hemisphere, inhibition of the activation of motor-related brain areas in the unaffected hemisphere, and changing the FCs of intra-hemispheric and inter-hemispheric motor networks.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Estimulación Magnética Transcraneal/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Imagen por Resonancia Magnética , Recuperación de la Función/fisiología , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Resultado del Tratamiento
13.
Front Neurosci ; 17: 1259872, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869516

RESUMEN

Background: Upper limb motor recovery is one of the important goals of stroke rehabilitation. Intermittent theta burst stimulation (iTBS), a new type of repetitive transcranial magnetic stimulation (rTMS), is considered a potential therapy. However, there is still no consensus on the efficacy of iTBS for upper limb motor dysfunction after stroke. Stimulus dose may be an important factor affecting the efficacy of iTBS. Therefore, we aim to investigate and compare the effects and neural mechanisms of three doses of iTBS on upper limb motor recovery in stroke patients, and our hypothesis is that the higher the dose of iTBS, the greater the improvement in upper limb motor function. Methods: This prospective, randomized, controlled trial will recruit 56 stroke patients with upper limb motor dysfunction. All participants will be randomized in a 1:1:1:1 ratio to receive 21 sessions of 600 pulses active iTBS, 1,200 pulses active iTBS, 1,800 pulses active iTBS, or 1,800 pulses sham iTBS in addition to conventional rehabilitation training. The primary outcome is the Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) score from baseline to end of intervention, and the secondary outcomes are the Wolf Motor Function Test (WMFT), Grip Strength (GS), Modified Barthel Index (MBI), and Stroke Impact Scale (SIS). The FMA-UE, MBI, and SIS are assessed pre-treatment, post-treatment, and at the 3-weeks follow-up. The WMFT, GS, and resting-state functional magnetic resonance imaging (rs-fMRI) data will be obtained pre- and post-treatment. Discussion: The iTBS intervention in this study protocol is expected to be a potential method to promote upper limb motor recovery after stroke, and the results may provide supportive evidence for the optimal dose of iTBS intervention.

14.
Int Immunopharmacol ; 124(Pt A): 110767, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37657243

RESUMEN

BACKGROUND: Intestinal inflammatory damage is an important factor in the development of graft-versus-host disease (GVHD). IFN-γ and IL-10 play key roles in gastrointestinal inflammation, and human placental mesenchymal stromal cells (hPMSCs) can alleviate inflammatory damage during GVHD. CD73 is highly expressed by hPMSCs. We aimed to study whether hPMSCs could alleviate intestinal damage in GVHD mice by modulating IFN-γ and IL-10 in CD4+T cells by CD73. METHODS: A GVHD mouse model was induced using 8-week-old C57BL/6J and BALB/c mice, which were treated with regular hPMSCs (hPMSCs) or hPMSCs expressing low level of CD73 (shCD73). Then, the levels of IFN-γ and IL-10 in CD4+T cells were determined using flow cytometry. Transmission electron microscopy, western blotting, and morphological staining were employed to observe the intestinal damage. RESULTS: hPMSCs ameliorated pathological damage and inhibited the reduction of the tight junction molecules occludin and ZO-1. They also downregulated IFN-γ and upregulated IL-10 secretion in CD4+T cells via CD73. Moreover, IL-10 mitigated the inhibitory effects of IFN-γ on the expression of occludin in both Caco-2 and NCM460 cells in vitro, but did not affect ZO-1. In addition, hPMSCs upregulated the level of AMPK phosphorylation in CD4+T cells by CD73, which is positively associated with the proportion of CD4+IFN-γ+IL-10+T, and CD4+IFN-γ-IL-10+T cells. CONCLUSIONS: Our findings suggested that hPMSCs may balance the levels of IFN-γ and IL-10 in CD4+T cells by promoting the phosphorylation of AMPK via CD73, which alleviates the loss of occludin and ZO-1 in intestinal epithelial cells and, in turn, reduces inflammatory injury in GVHD mice.

15.
Front Neurosci ; 17: 1102311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260845

RESUMEN

Background: Post-stroke cognitive impairment (PSCI) is a significant health concern. Transcranial magnetic stimulation (TMS) is considered a promising rehabilitation therapy for improving cognition, and the effects of excitatory TMS on PSCI have received much attention in recent years. However, the effects of different cerebral hemispheres on excitatory TMS treatment of cognitive impairment have not been studied. This review aimed to study the effects of excitatory TMS over the dorsolateral prefrontal cortex (DLPFC) of different cerebral hemispheres on the cognitive function of patients with PSCI. Methods: Literature published in PubMed, Web of Science, Embase, Cochrane Library, Scopus, and Wiley from inception to September 30, 2022, were searched. Two researchers independently performed literature screening, data extraction, and quality assessment. Furthermore, we conducted a meta-analysis using RevMan software (version 5.4) and rated the strength of evidence using GRADEpro. Results: A total of 19 studies were included in this meta-analysis. The results showed that excitatory TMS over the left hemisphere DLPFC was significantly better in improving global cognition (SMD = 2.26, 95% CI 1.67-2.86, P < 0.00001; vs. SMD = 2.53, 95% CI 1.86-3.20, P < 0.00001), memory (SMD = 1.29, 95% CI 0.72-1.87, P < 0.0001), attention (SMD = 2.32, 95% CI 1.64-3.01, P < 0.00001), executive (SMD = 0.64, 95% CI 0.21-1.07, P = 0.004), P300 latency (SMD = 2.69, 95% CI 2.13-3.25, P < 0.00001), and depression (SMD = 0.95, 95% CI 0.26-1.63, P = 0.007) than that of the control group, but the effect on improving activities of daily living (ADL) was unclear (P = 0.03 vs. P = 0.17). Subgroup analysis further showed that excitatory TMS over the right hemisphere DLPFC was effective in improving the global cognition of PSCI patients (P < 0.00001), but the stimulation effect over the ipsilateral hemisphere DLPFC was unclear (P = 0.11 vs. P = 0.003). Additionally, excitatory TMS over the ipsilateral hemisphere DLPFC showed no statistical difference in improving ADL between the two groups (P = 0.25). Conclusions: Compared to other hemispheric sides, excitatory TMS over the left hemisphere DLPFC was a more effective stimulation area, which can significantly improved the global cognitive function, memory, attention, executive, P300 latency, and depression in patients with PSCI. There was no apparent therapeutic effect on improving activities of daily living (ADL). In the future, more randomized controlled trials with large-sample, high quality, and follow-up are necessary to explore a usable protocol further. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42022369096.

16.
Appl Neuropsychol Adult ; : 1-8, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37141150

RESUMEN

We aimed to explore the cognitive characteristics of patients with post-stroke cognition impairment (PSCI) on the basis of the Wechsler Adult Intelligence Scale-Revised in China (WAIS-RC) and the individual contribution of the subtests to WAIS score. We included 227 patients with PSCI who were assessed using the WAIS-RC. We described the characteristics and score distribution of the scale and subtests individually and compared them with those of the normal group to measure the damage degree of these patients. We performed item response theory analysis to explore the best criterion score for all dimensions that allowed ideal discrimination and difficulty for reflecting cognitive level. Finally, we analyzed the contribution of each dimension to the overall cognitive function. Patients with PSCI showed worse cognition levels than healthy individuals in terms of overall intelligence quotient (73.26-100, -1.78 SD), with a difference of 4.54-7.96 points in each dimension (-0.68 to -1.82 SD), and a range of 5-7 points is the appropriate range for reflecting cognitive ability in patients with PSCI. The average cognitive level of patients with PSCI was significantly inferior to normal people (-1.78 SD, 96.25%). Vocabulary contributes most to WAIS score.

17.
Exp Ther Med ; 24(6): 741, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36478883

RESUMEN

Ischemic/reperfusion (I/R) injury is the primary cause of acute kidney injury (AKI). Hydroxysafflor yellow A (HSYA), a natural compound isolated from Carthamus tinctorius L., has been found to possess anti-inflammatory and antioxidant properties. However, the protective effects and potential mechanism of HSYA on I/R-induced AKI remains unclear. In the present study, the in vitro hypoxia/reoxygenation (H/R) and in vivo renal I/R models were employed to investigate the renal protective effects and molecular mechanisms of HSYA on I/R-induced AKI. The present results indicated that HSYA pretreatment significantly ameliorated renal damage and dysfunction in the I/R injury mice via enhancing the antioxidant capacity and suppressing the oxidative stress injury, inflammatory response, and apoptosis. Mechanistic studies showed that HSYA could upregulate Akt/GSK-3ß/Fyn-Nrf2 axis-mediated antioxidant gene expression both in vitro and in vivo. Moreover, HSYA-mediated improvement in antioxidant, anti-inflammatory, and anti-apoptotic effects in H/R-treated HK-2 cells was abrogated by Akt inhibitor LY294002 supplementation. In summary, the present results demonstrated that HSYA attenuated kidney oxidative stress, inflammation response, and apoptosis induced by I/R, at least in part, via activating the Akt/GSK-3ß/Fyn-Nrf2 axis pathway. These findings provided evidence that HSYA may be applied as a potential therapeutic agent in the treatment of I/R induced AKI.

18.
Front Aging Neurosci ; 14: 878025, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928994

RESUMEN

Background: Combined cognitive and physical intervention is commonly used as a non-pharmacological therapy to improve cognitive function in older adults, but it is uncertain whether combined intervention can produce stronger cognitive gains than either single cognitive or sham intervention. To address this uncertainty, we performed a systematic review and meta-analysis to evaluate the effects of combined intervention on cognition in older adults with and without mild cognitive impairment (MCI). Methods: We systematically searched eight databases for relevant articles published from inception to November 1, 2021. Randomized controlled trials (RCTs) and non-randomized controlled trials (NRCTs) were used to compare the effects of the combined intervention with a single cognitive or sham intervention on cognition in older adults with and without MCI aged ≥ 50 years. We also searched Google Scholar, references of the included articles, and relevant reviews. Two independent reviewers performed the article screening, data extraction, and bias assessment. GRADEpro was used to rate the strength of evidence, and RevMan software was used to perform the meta-analysis. Results: Seventeen studies were included in the analysis, comprising eight studies of cognitively healthy older adults and nine studies of older adults with MCI. The meta-analysis showed that the combined intervention significantly improved most cognitive functions and depression (SMD = 0.99, 95% CI 0.54-1.43, p < 0.0001) in older adults compared to the control groups, but the intervention effects varied by cognition domains. However, there was no statistically significant difference in the maintenance between the combined and sham interventions (SMD = 1.34, 95% CI -0.58-3.27, p = 0.17). The subgroup analysis also showed that there was no statistical difference in the combined intervention to improve global cognition, memory, attention, and executive function between cognitive healthy older adults and older adults with MCI. Conclusions: Combined intervention improves cognitive functions in older adults with and without MCI, especially in global cognition, memory, and executive function. However, there was no statistical difference in the efficacy of the combined intervention to improve cognition between cognitive healthy older adults and older adults with MCI. Moreover, the maintenance of the combined intervention remains unclear due to the limited follow-up data and high heterogeneity. In the future, more stringent study designs with more follow-ups are needed further to explore the effects of combined intervention in older adults. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier: CRD42021292490.

19.
J Alzheimers Dis ; 88(4): 1263-1278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811527

RESUMEN

BACKGROUND: The prevalence of mild cognitive impairment (MCI) continues to increase due to population aging. Exercise has been a supporting health strategy that may elicit beneficial effects on cognitive function and prevent dementia. OBJECTIVE: This study aimed to examine the effects of aerobic, resistance, and multimodal exercise training on cognition in adults aged > 60 years with MCI. METHODS: We searched the Cochrane Library, PubMed, and Embase databases and ClinicalTrials.gov (https://clinicaltrials.gov) up to November 2021, with no language restrictions. We included all published randomized controlled trials (RCTs) comparing the effect of exercise programs on cognitive function with any other active intervention or no intervention in participants with MCI aged > 60 years. RESULTS: Twelve RCTs were included in this review. Meta-analysis results revealed significant improvements in resistance training on measures of executive function (p < 0.05) and attention (p < 0.05); no significant differences were observed between aerobic exercise and controls on any of the cognitive comparisons. CONCLUSION: Exercise training had a small beneficial effect on executive function and attention in older adults with MCI. Larger studies are required to examine the effects of exercise and the possible moderators.


Asunto(s)
Disfunción Cognitiva , Anciano , Cognición , Disfunción Cognitiva/terapia , Función Ejecutiva , Ejercicio Físico , Terapia por Ejercicio , Humanos
20.
Front Neurol ; 13: 918597, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795793

RESUMEN

Background: Repetitive transcranial magnetic stimulation (rTMS) is a promising therapy to promote recovery of the upper limb after stroke. According to the regulation of cortical excitability, rTMS can be divided into excitatory rTMS and inhibitory rTMS, and excitatory rTMS includes high-frequency rTMS (HF-rTMS) or intermittent theta-burst stimulation (iTBS). We aimed to evaluate the effects of excitatory rTMS over the ipsilesional hemisphere on upper limb motor recovery after stroke. Methods: Databases of PubMed, Embase, ISI Web of Science, and the Cochrane Library were searched for randomized controlled trials published before 31 December 2021. RCTs on the effects of HF-rTMS or iTBS on upper limb function in patients diagnosed with stroke were included. Two researchers independently screened the literature, extracted the data, and assessed quality. The meta-analysis was performed by using Review Manager Version 5.4 software. Results: Fifteen studies with 449 participants were included in this meta-analysis. This meta-analysis found that excitatory rTMS had significant efficacy on upper limb motor function (MD = 5.88, 95% CI, 3.32-8.43, P < 0.001), hand strength (SMD = 0.53, 95% CI, 0.04-1.01, P = 0.03), and hand dexterity (SMD = 0.76, 95% CI, 0.39-1.14, P < 0.001). Subgroup analyses based on different types of rTMS showed that both iTBS and HF-rTMS significantly promoted upper limb motor function (iTBS, P < 0.001; HF-rTMS, P < 0.001) and hand dexterity (iTBS, P = 0.01; HF-rTMS, P < 0.001) but not hand strength (iTBS, P = 0.07; HF-rTMS, P = 0.12). Further subgroup analysis based on the duration of illness demonstrated that applying excitatory rTMS during the first 3 months (<1 month, P = 0.01; 1-3 months, P = 0.001) after stroke brought significant improvement in upper limb motor function but not in the patients with a duration longer than 3 months (P = 0.06). We found that HF-rTMS significantly enhanced the motor evoked potential (MEP) amplitude of affected hemisphere (SMD = 0.82, 95% CI, 0.32-1.33, P = 0.001). Conclusion: Our study demonstrated that excitatory rTMS over the ipsilesional hemisphere could significantly improve upper limb motor function, hand strength, and hand dexterity in patients diagnosed with stroke. Both iTBS and HF-rTMS which could significantly promote upper limb motor function and hand dexterity, and excitatory rTMS were beneficial to upper limb motor function recovery only when applied in the first 3 months after stroke. HF-rTMS could significantly enhance the MEP amplitude of the affected hemisphere. High-quality and large-scale randomized controlled trials in the future are required to confirm our conclusions. Clinical Trial Registration: www.crd.york.ac.uk/prospero/, identifier: CRD42022312288.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...