Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(3): 3784-3791, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31878779

RESUMEN

We investigated the influence of the multilayered hybrid buffer consisting of Al2O3/PA (polyacrylic) organic layer/Al2O3 on the electrical and mechanical properties of amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). The multilayered organic/inorganic hybrid buffer has multiple beneficial effects on the flexible TFTs under repetitive bending stress. First, compared to the PA or Al2O3 single-layered buffer, the multilayered hybrid buffer showed an improved WVTR value of 1.1 × 10-4 g/m2 day. Even after 40,000 bending cycles, the WVTR value of the hybrid buffer increased only by 17%, while the WVTR value of the Al2O3 layer doubled after cyclical bending stress. We also confirmed that the hybrid buffer has advantages in mechanical durability of the TFT layers because of the change in the position of the neutral plane and the strain reduction effect by the PA organic layer. When we fabricate a top-gate a-IGZO TFT with the hybrid buffer layer (HB TFT), the device shows Vth = 0.74 V, µFE = 14.4 cm2/V·s, a subthreshold slope of 0.27 V/dec, and hysteresis of 0.21 V, which are superior to that of TFTs fabricated on an Al2O3 single-layer buffer (IB TFT). From the X-ray photoelectron spectroscopy and elastic recoil detection analysis, the difference in the electrical performance of TFTs could be explained by hydrogen-related molecules. After annealing at 270 °C, the amounts of hydrogen found in the a-IGZO layer for the IB, HB, and OB TFTs were 3.57 × 1021, 5.77 × 1021, and 7.34 × 1021 atoms/cm3, respectively. A top-gate bottom-contact structured a-IGZO TFT fabricated on the PA layer (OB TFT) showed a gate dielectric breakdown because of excessively high hydrogen content and high nonbonding oxygen content. On the other hand, HB TFTs showed better positive bias stability because of the higher hydrogen concentration, as hydrogen (when not excessive) is beneficial in passivating electron traps. Finally, we conducted 60,000 repetitive bending cycles on IB TFTs and HB TFTs with various bending radii down to 1.5 mm. The HB TFT shows improved mechanical durability and exhibits less electrical degradation during and after repetitive bending stress, compared to the IB TFT.

2.
ACS Appl Mater Interfaces ; 11(4): 4152-4158, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30608137

RESUMEN

In this study, we investigated the effects of intense pulsed light (IPL) on the electrical performance properties of zinc oxynitride (ZnON) thin films and thin-film transistors (TFTs) with different irradiation energies. Using the IPL process on the oxide/oxynitride semiconductors has various advantages, such as an ultrashort process time (∼100 ms) and high electrical performance without any additional thermal processes. As the irradiation energy of IPL increased from 30 to 50 J/cm2, the carrier concentration of ZnON thin films decreased from 5.07 × 1019 to 9.96 × 1016 cm-3 and the electrical performance of TFTs changed significantly, which is optimized at an energy of 40 J/cm2 (field effect mobility of 48.4 cm2 V-1 s-1). The properties of TFTs, such as mobility, subthreshold swing, and hysteresis, and the stability of the device under negative bias degraded as the irradiation energy increased. This degradation contributed to the change in nitrogen-related bonding states, such as nonstoichiometric Zn xN y and N-N bonding, rather than that of oxygen-related bonding states and the atomic composition of ZnON thin films. Optimization of the IPL process in our results makes it possible to produce high-performance ZnON TFTs very fast without any additional thermal treatment, which indicates that highly productive TFT fabrication can be achieved via this process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...