Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 11(7): e0159330, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27428333

RESUMEN

Somatic cell nuclear transfer (SCNT) is a well-known laboratory technique. The principle of the SCNT involves the reprogramming a somatic nucleus by injecting a somatic cell into a recipient oocyte whose nucleus has been removed. Therefore, the nucleus donor cells are considered as a crucial factor in SCNT. Cell cycle synchronization of nucleus donor cells at G0/G1 stage can be induced by contact inhibition or serum starvation. In this study, acteoside, a phenylpropanoid glycoside compound, was investigated to determine whether it is applicable for inducing cell cycle synchronization, cytoprotection, and improving SCNT efficiency in canine fetal fibroblasts. Primary canine fetal fibroblasts were treated with acteoside (10, 30, 50 µM) for various time periods (24, 48 and 72 hours). Cell cycle synchronization at G0/G1 stage did not differ significantly with the method of induction: acteoside treatment, contact inhibition or serum starvation. However, of these three treatments, serum starvation resulted in significantly increased level of reactive oxygen species (ROS) (99.5 ± 0.3%) and apoptosis. The results also revealed that acteoside reduced ROS and apoptosis processes including necrosis in canine fetal fibroblasts, and improved the cell survival. Canine fetal fibroblasts treated with acteoside were successfully arrested at the G0/G1 stage. Moreover, the reconstructed embryos using nucleus donor cells treated with acteoside produced a healthy cloned dog, but not the embryos produced using nucleus donor cells subjected to contact inhibition. In conclusion, acteoside induced cell cycle synchronization of nucleus donor cells would be an alternative method to improve the efficiency of canine SCNT because of its cytoprotective effects.


Asunto(s)
Núcleo Celular/efectos de los fármacos , Citoprotección/fisiología , Fibroblastos/efectos de los fármacos , Fase G1/efectos de los fármacos , Glucósidos/farmacología , Técnicas de Transferencia Nuclear , Fenoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Núcleo Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Clonación de Organismos/métodos , Inhibición de Contacto/fisiología , Medio de Cultivo Libre de Suero/farmacología , Perros , Transferencia de Embrión , Femenino , Feto , Fibroblastos/citología , Fibroblastos/fisiología , Especies Reactivas de Oxígeno/metabolismo
2.
J Assist Reprod Genet ; 33(7): 939-48, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27189054

RESUMEN

PURPOSE: The aim of this study is to investigate the effect of acteoside, an antioxidant, on in vitro maturation (IVM) of oocytes to improve early parthenogenetic embryonic developmental competence. METHODS: Porcine immature oocytes (total 770) were cultured in IVM medium with acteoside at various concentrations, 0 (control), 10, 30, and 50 µM. Each group was assessed for maturation and subsequent development rates, reactive oxygen species (ROS) level (15 oocytes per group and four independent experiments performed), ultrastructure observation (15 oocytes per group), mitochondrial activity (30 oocytes per groups and three independent experiments performed), and expression patterns of apoptosis-related genes (100 expended parthenogenetic embryos per group and three independent experiment performed). Main outcome measures were the rates of IVM, blastocyst formation, ROS, mitochondria, and expression of apoptosis-related genes in oocytes treated with acteoside. RESULT(S): Addition of acteoside during IVM did not change the maturation efficiency of oocytes but improved the rate of blastocyst formation with significantly decreased ROS level. Moreover, in acteoside-treated oocytes, cytoplasmic maturation was improved with morphologically uniform distribution of mitochondria and lipid droplets in cytoplasm. Acteoside supplementation also increased the mRNA expression levels of antiapoptotic genes and reduced those of pro-apoptotic genes. CONCLUSION(S): Acteoside supplementation in IVM medium improves the oocyte quality and subsequent development of pre-implantation embryos that would eventually contribute to produce embryos with high embryonic development competence.


Asunto(s)
Antioxidantes/farmacología , Fertilización In Vitro/métodos , Glucósidos/farmacología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Mitocondrias/fisiología , Oocitos/fisiología , Partenogénesis/efectos de los fármacos , Fenoles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Blastocisto/citología , Técnicas de Cultivo de Embriones/veterinaria , Desarrollo Embrionario/efectos de los fármacos , Femenino , Porcinos
3.
Theriogenology ; 81(2): 309-14, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24139601

RESUMEN

Because intracytoplasmic sperm injection (ICSI) had been introduced to animal science, not only reproductive biology of domestic animals, but also medicine to treat infertility has been developed. This assisted reproductive technology is beneficial for generating transgenic animals, especially pigs, because polyspermy is the greatest hurdle in porcine IVF when researchers make highly qualified preimplantation embryos. However, ICSI-derived embryos expressed high level of reactive oxygen species (ROS), which are known to cause serious dysfunction during preimplantation development. The objective of this study was to investigate the developmental competence, ROS level, and apoptosis index when glutathione (GSH) or cysteine was supplemented into the in vitro culture medium for ICSI-derived porcine embryos. First, we evaluated the effect of different concentrations of GSH or cysteine on developmental ability of porcine ICSI-derived embryos. The cleavage rate (79.6%) and the blastocyst formation rate (20.9%) were significantly improved in culture medium supplemented with 1 mmol/L GSH compared with other concentrations or no supplementation. Also, 1.71 mmol/L cysteine showed a significantly higher proportion of cleavage (80.7%) and blastocyst formation (22.5%) than other cysteine-supplemented groups. Next, we confirmed that intracellular ROS level was significantly reduced in the group of blastocysts cultured with GSH or cysteine after ICSI compared with the no supplementation group. Finally, we found that terminal uridine nick-end labeling index, fragmentation, and total apoptosis were significantly decreased and the total cell number was significantly increased in blastocysts when ICSI-derived embryos were cultured with supplementation of 1.71 mmol/L cysteine or 1 mmol/L GSH. Taken together, these results strongly indicate that GSH or cysteine can improve the developmental competence of porcine ICSI-derived embryos by reducing intracellular ROS level and the apoptosis index.


Asunto(s)
Blastocisto/efectos de los fármacos , Cisteína/farmacología , Desarrollo Embrionario/efectos de los fármacos , Glutatión/farmacología , Inyecciones de Esperma Intracitoplasmáticas/veterinaria , Porcinos/embriología , Animales , Medios de Cultivo , Técnicas de Cultivo de Embriones/veterinaria , Especies Reactivas de Oxígeno , Inyecciones de Esperma Intracitoplasmáticas/métodos
4.
Hum Cell ; 27(2): 51-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24166061

RESUMEN

The amniotic fluid contains mesenchymal stem cells (MSCs) and can be readily available for tissue engineering. Regenerative treatments such as tissue engineering, cell therapy, and transplantation show potential in clinical trials of degenerative diseases. Disease presentation and clinical responses in the Canis familiaris not only are physiologically similar to human compared with other traditional mammalian models but is also a suitable model for human diseases. The aim of this study was to investigate whether canine amniotic-fluid-derived mesenchymal stem cells (cAF-MSCs) can differentiate into neural precursor cells in vitro when exposed to neural induction reagent. During neural differentiation, cAF-MSCs progressively acquire neuron-like morphology. Messenger RNA (mRNA) expression levels of neural-specific genes, such as NEFL, NSE, and TUBB3 (ßIII-tubulin) dramatically increased in the differentiated cAF-MSCs after induction. In addition, protein expression levels of nestin, ßIII-tubulin, and tyrosine hydroxylase remarkably increased in differentiated cAF-MSCs. This study demonstrates that cAF-MSCs have great potential for neural precursor differentiation in vitro. Therefore, amniotic fluid may be a suitable alternative source of stem cells and can be applied to cell therapy in neurodegenerative diseases.


Asunto(s)
Líquido Amniótico/citología , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Neuronas , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Perros , Factor de Crecimiento Epidérmico/farmacología , Factores de Crecimiento de Fibroblastos/farmacología , Expresión Génica , Células Madre Mesenquimatosas/metabolismo , Nestina/metabolismo , Enfermedades Neurodegenerativas/terapia , Proteínas de Neurofilamentos/metabolismo , ARN Mensajero/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...