Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Environ Sci Pollut Res Int ; 31(30): 43198-43210, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38896219

RESUMEN

With the continuous increase in global mariculture production and aquaculture areas, the environmental pollution caused by the mariculture industry is becoming increasingly serious. Faced with environmental issues, countries worldwide have formulated environmental regulations to scientifically intervene in marine environmental pollution issues and promote the green development of the mariculture industry. However, we must determine if strict environmental regulations can effectively promote the green development of the mariculture industry. This article uses the inter-provincial panel data of China's coastal areas from 2003 to 2019 as a sample. We use the entropy-technique for order of preference by similarity to ideal solution method to measure the intensity of environmental regulation in China's coastal areas and the level of green development of the mariculture industry. On this basis, an economic geography nested matrix was selected to construct a spatial panel econometric model to empirically explore the impact of environmental regulations on the green development of the mariculture industry. This approach also allows us to examine the heterogeneity of the impact of different types of environmental regulations on the green development of the mariculture industry. The research results indicate that environmental regulations have a "U-shaped" impact on the green development of the local mariculture industry, while they have an inverted "U-shaped" impact on the green development of the nearby mariculture industry. Furthermore, heterogeneity exists in the impact of different types of environmental regulations on the green development of the mariculture industry. Based on the research results, this article proposes policy recommendations from the perspectives of flexibly adjusting the intensity of environmental regulations, accelerating the development of voluntary-based environmental regulations, and regulating competition among local governments, which can provide decision-making references for the government to adjust environmental regulation policies and improve the level of green development in the mariculture industry.


Asunto(s)
Acuicultura , China , Política Ambiental , Contaminación Ambiental/legislación & jurisprudencia , Industrias
2.
Phytomedicine ; 127: 155391, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452690

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the commonest cancers worldwide. Metastasis is the most common cause of death in patients with CRC. Arenobufagin is an active component of bufadienolides, extracted from toad skin and parotid venom. Arenobufagin reportedly inhibits epithelial-to-mesenchymal transition (EMT) and metastasis in various cancers. However, the mechanism through which arenobufagin inhibits CRC metastasis remains unclear. PURPOSE: This study aimed to elucidate the molecular mechanisms by which arenobufagin inhibits CRC metastasis. METHODS: Wound-healing and transwell assays were used to assess the migration and invasion of CRC cells. The expression of nuclear factor erythroid-2-related factor 2 (Nrf2) in the CRC tissues was assessed using immunohistochemistry. The protein expression levels of c-MYC and Nrf2 were detected by immunoblotting. A mouse model of lung metastasis was used to study the effects of arenobufagin on CRC lung metastasis in vivo. RESULTS: Arenobufagin observably inhibited the migration and invasion of CRC cells by downregulating c-MYC and inactivating the Nrf2 signaling pathway. Pretreatment with the Nrf2 inhibitor brusatol markedly enhanced arenobufagin-mediated inhibition of migration and invasion, whereas pretreatment with the Nrf2 agonist tert­butylhydroquinone significantly attenuated arenobufagin-mediated inhibition of migration and invasion of CRC cells. Furthermore, Nrf2 knockdown with short hairpin RNA enhanced the arenobufagin-induced inhibition of the migration and invasion of CRC cells. Importantly, c-MYC acts as an upstream modulator of Nrf2 in CRC cells. c-MYC knockdown markedly enhanced arenobufagin-mediated inhibition of the Nrf2 signaling pathway, cell migration, and invasion. Arenobufagin inhibited CRC lung metastasis in vivo. Together, these findings provide evidence that interruption of the c-MYC/Nrf2 signaling pathway is crucial for arenobufagin-inhibited cell metastasis in CRC. CONCLUSIONS: Collectively, our findings show that arenobufagin could be used as a potential anticancer agent against CRC metastasis. The arenobufagin-targeted c-MYC/Nrf2 signaling pathway may be a novel chemotherapeutic strategy for treating CRC.


Asunto(s)
Bufanólidos , Neoplasias Colorrectales , Neoplasias Pulmonares , Animales , Ratones , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Colorrectales/patología , Línea Celular Tumoral , Bufanólidos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Transición Epitelial-Mesenquimal , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Metástasis de la Neoplasia
3.
Genes (Basel) ; 15(1)2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38254999

RESUMEN

The MYB transcription factor gene family is among the most extensive superfamilies of transcription factors in plants and is involved in various essential functions, such as plant growth, defense, and pigment formation. Salvia nemorosa is a perennial herb belonging to the Lamiaceae family, and S. nemorosa has various colors and high ornamental value. However, there is little known about its genome-wide MYB gene family and response to flower color formation. In this study, 142 SnMYB genes (MYB genes of S. nemorosa) were totally identified, and phylogenetic relationships, conserved motifs, gene structures, and expression profiles during flower development stages were analyzed. A phylogenetic analysis indicated that MYB proteins in S. nemorosa could be categorized into 24 subgroups, as supported by the conserved motif compositions and gene structures. Furthermore, according to their similarity with AtMYB genes associated with the control of anthocyanin production, ten SnMYB genes related to anthocyanin biosynthesis were speculated and chosen for further qRT-PCR analyses. The results indicated that five SnMYB genes (SnMYB75, SnMYB90, SnMYB6, SnMYB82, and SnMYB12) were expressed significantly differently in flower development stages. In conclusion, our study establishes the groundwork for understanding the anthocyanin biosynthesis of the SnMYB gene family and has the potential to enhance the breeding of S. nemorosa.


Asunto(s)
Salvia , Factores de Transcripción , Factores de Transcripción/genética , Salvia/genética , Antocianinas/genética , Filogenia , Fitomejoramiento
4.
Arch Gerontol Geriatr ; 117: 105255, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37952424

RESUMEN

OBJECTIVE: Aging becomes the most predominant risk factor for all age-associated pathological conditions with the increase of life expectancy and the aggravation of social aging. Slowing down the speed of aging is considered an effective way to improve health, but so far, effective anti-aging methods are relatively lacking. METHODS: Anemonin (ANE) was screened from eight existing small-molecule compounds by cell viability assay. The function of ANE was determined by the analysis of cell proliferation, ß -galactosidase (SA-ß -Gal) activity, cell cycle, SASP secretion, NAD+/NADH ratio, and other aging-related indicators. The targets of ANE were predicted by Drug Target Prediction System (DTPS) and Swiss Targe Prediction System. The effect of ANE on PARP-1-NAD+-SIRT1 signaling pathway was assessed by quantitative reverse-transcription polymerase chain reaction (RT-PCR), Western blot, PARP1, NAD+ and SIRT1 activity detection. RESULTS: ANE can delay cell senescence; PARP1 is one of the targets of ANE and plays a crucial role in ANE anti-aging; ANE release more NAD+ by inhibiting PARP1 activity, thereby conversely promoting the function of SIRT1 and delay cell senescence. CONCLUSIONS: Our study indicates that ANE can delay cellular senescence through the PARP1-NAD+-SIRT1 signaling pathway, which may be considered as an effective anti-aging strategy.


Asunto(s)
NAD , Sirtuina 1 , Humanos , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , NAD/metabolismo , NAD/farmacología , Diploidia , Senescencia Celular/fisiología , Transducción de Señal , Fibroblastos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/farmacología
5.
Nutrients ; 14(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36432450

RESUMEN

Ensuring nutrient adequacy for all is a common goal of the international community, but spatial difference is one of the barriers to its development. Exploring nutrient adequacy in coastal areas of China can help regions where food production systems and economic development systems are under mutual stress to reduce nutritional disparities and improve nutrition levels. This paper used the transformation food-to-nutrient model to calculate nutrient production and nutrient consumption in 11 coastal provinces of China and analyzed their spatial patterns, after which spatial differences in nutrient adequacy (including energy, protein and fat) were analyzed. The results showed that nutrient production and nutrient consumption in coastal areas of China showed significant spatial differences, in which nutrient production was mainly concentrated in land food, and the three provinces of Shandong, Jiangsu and Hebei contributed more. Guangdong had the highest nutrient consumption; in contrast, Shanghai, Tianjin, and Hainan had the lowest consumption. Nutrient adequacy was not optimistic, with fat being particularly significant, and nutrient surplus quantity was mainly concentrated in Shandong and Jiangsu and nutrient deficiency quantity was mainly concentrated in Guangdong. Overall, the study area had adequate levels of protein and was deficient in energy and fat levels, with surplus or shortage of 2.41 million tonnes, 2620 billion kcal and 9.97 million tonnes, respectively.


Asunto(s)
Nutrientes , China
6.
Metabolites ; 12(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36295870

RESUMEN

Salvia miltiorrhiza Bunge is one of the most famous traditional Chinese medicinal plants. The two most important classes of pharmaceutically relevant compounds in S. miltiorrhiza are phenolic acids and tanshinones. The MYB family of transcription factors may efficiently regulate the secondary metabolism in plants. In this study, a subgroup 4 R2R3MYB transcription factor gene, SmMYB4, was isolated from S. miltiorrhiza and functionally characterized using overexpression and a RNAi-mediated silencing. We achieved a total of six overexpressions and eight RNAi transgenic lines from the Agrobacterium leaf disc method. The content of the total phenolics, rosmarinic acid, and salvianolic acid B markedly decreased in the SmMYB4-overexpressing lines but increased in the SmMYB4-RNAi lines. The content of the total tanshinones, cryptotanshinone, and tanshinone IIA decreased in the SmMYB4-overexpressing transgenic lines but increased in the SmMYB4-RNAi lines. A gene expression analysis demonstrated that SmMYB4 negatively regulated the transcription of the critical enzyme genes involved in the phenolic acid and tanshinone biosynthesis. The genetic control of this transcriptional repressor may be used to improve the content of these bioactive compounds in the cultivated S. miltiorrhiza.

7.
Genes (Basel) ; 13(10)2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36292776

RESUMEN

Genome-wide association studies (GWASs) have identified more than 500 loci for bone mineral density (BMD), but functional variants in these loci are less known. The aim of this study was to identify RNA modification-related SNPs (RNAm-SNPs) for BMD in GWAS loci. We evaluated the association of RNAm-SNPs with quantitative heel ultrasound BMD (eBMD) in 426,824 individuals, femoral neck (FN) and lumbar spine (LS) BMD in 32,961 individuals and fracture in ~1.2 million individuals. Furthermore, we performed functional enrichment, QTL and Mendelian randomization analyses to support the functionality of the identified RNAm-SNPs. We found 300 RNAm-SNPs significantly associated with BMD, including 249 m6A-, 28 m1A-, 3 m5C-, 7 m7G- and 13 A-to-I-related SNPs. m6A-SNPs in OP susceptibility genes, such as WNT4, WLS, SPTBN1, SEM1, FUBP3, LRP5 and JAG1, were identified and functional enrichment for m6A-SNPs in the eBMD GWAS dataset was detected. eQTL signals were found for nearly half of the identified RNAm-SNPs, and the affected gene expression was associated with BMD and fracture. The RNAm-SNPs were also associated with the plasma levels of proteins in cytokine-cytokine receptor interaction, PI3K-Akt signaling, NF-kappa B signaling and MAPK signaling pathways. Moreover, the plasma levels of proteins (CCL19, COL1A1, CTSB, EFNA5, IL19, INSR, KDR, LIFR, MET and PLXNB2) in these pathways were found to be associated with eBMD in Mendelian randomization analysis. This study identified functional variants and potential causal genes for BMD and fracture in GWAS loci and suggested that RNA modification may play an important role in osteoporosis.


Asunto(s)
Densidad Ósea , Fracturas Óseas , Humanos , Densidad Ósea/genética , Estudio de Asociación del Genoma Completo , Efrina-A5/genética , FN-kappa B/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Fracturas Óseas/genética , Genómica , Receptores de Citocinas/genética , Citocinas/genética , ARN
8.
IEEE Trans Cybern ; PP2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36170392

RESUMEN

In this article, two novel adaptive fault-tolerant control schemes for a class of nonlinear strict-feedback cyber-physical systems (CPSs) with deception attacks are presented. Deception attacks, such as false data-injection attacks, which destroy sensor networks, make the outputs and states of the CPSs unavailable. It is very difficult and challenging for a designer to achieve the tracking control under the circumstance of cyberattacks. To realize the tracking control for the studied CPSs, we propose a new coordinate transformation technology without precedent, where it takes the attack gains into account and uses the compromised states to design the corresponding controllers. In the backstepping design process, Nussbaum functions are presented to alleviate the influence of the unknown attack gains. Furthermore, we consider the actuator faults problem, which includes the loss of effectiveness and the bias fault. By skillfully designing the adaptive laws, the effect of actuator faults is completely eliminated. It is theoretically proved that the first proposed tracking control scheme can guarantee all signals in the closed-loop system are bounded and the output can track the desired reference signal. In addition, the second adaptive control scheme is also developed for the CPSs under the actuator faults and a more general assumption on the deception attacks is proposed simultaneously. Finally, the feasibility of the new proposed methods is verified by MATLAB simulation analysis.

9.
Hum Genomics ; 16(1): 25, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879730

RESUMEN

BACKGROUND: Genome-wide association studies (GWASs) have identified hundreds of loci for body mass index (BMI), but functional variants in these loci are less known. The purpose of this study was to identify RNA modification-related SNPs (RNAm-SNPs) for BMI in GWAS loci. BMI-associated RNAm-SNPs were identified in a GWAS of approximately 700,000 individuals. Gene expression and circulating protein levels affected by the RNAm-SNPs were identified by QTL analyses. Mendelian randomization (MR) methods were applied to test whether the gene expression and protein levels were associated with BMI. RESULTS: A total of 78 RNAm-SNPs associated with BMI (P < 5.0 × 10-8) were identified, including 65 m6A-, 10 m1A-, 3 m7G- and 1 A-to-I-related SNPs. Two functional loss, high confidence level m6A-SNPs, rs6713978 (P = 6.4 × 10-60) and rs13410999 (P = 8.2 × 10-59), in the intron of ADCY3 were the top significant SNPs. These two RNAm-SNPs were associated with ADCY3 gene expression in adipose tissues, whole blood cells, the tibial nerve, the tibial artery and lymphocytes, and the expression levels in these tissues were associated with BMI. Proteins enriched in specific KEGG pathways, such as natural killer cell-mediated cytotoxicity, the Rap1 signaling pathway and the Ras signaling pathway, were affected by the RNAm-SNPs, and circulating levels of some of these proteins (ADH1B, DOCK9, MICB, PRDM1, STOM, TMPRSS11D and TXNDC12) were associated with BMI in MR analyses. CONCLUSIONS: Our study identified RNAm-SNPs in BMI-related genomic loci and suggested that RNA modification may affect BMI by affecting the expression levels of corresponding genes and proteins.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proteína Disulfuro Reductasa (Glutatión) , Índice de Masa Corporal , Genómica , Humanos , Polimorfismo de Nucleótido Simple/genética , Proteína Disulfuro Reductasa (Glutatión)/genética , ARN
10.
RSC Adv ; 12(28): 18107-18114, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35800324

RESUMEN

An efficient and catalyst-free methodology for the reductive cyclization of various disulfides using BH3NH3 as a reductant and CO2 as a C1 resource was developed. The desired 2-unsubstituted benzothiazole derivatives were obtained in good to excellent yields. Moreover, mechanism investigation demonstrated that BH3NH3 played an important role in the formation of benzothiazole. As a reducing agent, BH3NH3 reduced CO2 and cleaved the S-S bond of the disulfide efficiently. In addition, the N-H bond of the amino group was also activated by BH3NH3. To the best of our knowledge, this is an unprecedented catalyst-free protocol for the synthesis of 2-unsubstituted benzothiazole from bis(2-aminophenyl) disulfide and CO2.

12.
Braz. J. Pharm. Sci. (Online) ; 58: e18650, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1420396

RESUMEN

Abstract The main purpose of this work was to compare the effects of the four preparation methods on the TFLX/HP-β-CD inclusion complex. The effects of different preparation methods on the inclusion complex were investigated by SEM, DSC, PXRD, FT-IR and 1H NMR. All the characterization information indicated that the four preparation methods could cause interaction between TFLX and HP-β-CD, but the inclusion complex prepared by solvent evaporation has more reaction sites. Phase solubility experiments demonstrated that the inclusion reaction was spontaneous. In vitro dissolution experiments showed that the dissolution of the inclusion complex in water was: solvent evaporation method (64.39%) > grinding method (42.37%) > ultrasonic method (40.00%) > freezing method (36.08%), and all higher than pure TFLX and physical mixture. These results suggest that the solvent evaporation is the most suitable method for preparing TFLX/HP-β-CD inclusion complexes.

13.
PLoS One ; 16(11): e0259853, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34818668

RESUMEN

Improving total factor productivity (TFP) is the source of power for high-quality development. Industrial structure optimization is an important way to improve TFP. This paper constructed an econometric model of industry structure changes impacting on TFP in the marine fisheries and conducted an empirical test and analysis. The results showed that the industry rationalization, softening and processing coefficient of marine fishery had a significant "structural dividend" for improving its TFP; while the impact of industrial structure advancement and aquaculture-catching structure changes did not have "structural dividend", but it could be a combination of other factors to reduce these adverse effects.We believe that simply pursuing the advanced evolution of the industrial structure is not conducive to sustainable development of fishery. Under the pursuit of the rationalization of the marine fishery industry structure, by promoting the coordinated evolution of marine fisheries advancement, aquaculture-catching structure and other factors, the "structural dividend" effect can be enhanced and the fishery can achieve sustainable development. Finally, it proposed to promote the development of advancement and rationalization of marine fishery industry structure coordinately, adjust fishery science and technology transformation direction and key points, and accelerate the development of intensive processing industry by cross-border integration.


Asunto(s)
Acuicultura/economía , Acuicultura/métodos , Explotaciones Pesqueras/tendencias , Animales , China , Conservación de los Recursos Naturales/métodos , Humanos , Industrias/métodos , Industria Manufacturera , Modelos Econométricos , Racionalización , Desarrollo Sostenible/tendencias , Tecnología
14.
ACS Omega ; 6(23): 14926-14937, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34151074

RESUMEN

Depolymerization is an emerging and promising route for the value-added utilization of low-rank coal (LRC) resources, and how to use the complex depolymerized mixtures efficiently is of great importance for this route. In this work, we designed the rational route of using depolymerized mixtures from lignite via ruthenium ion-catalyzed oxidation (RICO) depolymerization directly without complex separation to construct a Zr-based hydrogenation catalyst. The prepared catalyst was applied into the catalytic transfer hydrogenation of biomass-derived carbonyl compounds. Meanwhile, a copper-based oxidation catalyst was also constructed via a similar route to investigate the universality of the proposed route. Special insights were given into how the depolymerized components with different structures influenced the performances of the catalysts. The effects of the solvents used during the catalyst preparation (H2O and DMF) were also studied. The results showed that the proposed route using the depolymerized mixtures from lignite via RICO to construct catalysts was feasible for both Zr-based and Cu-based catalysts. The two catalysts prepared gave high efficiency for their corresponding reaction, i.e., the Zr-based catalyst for catalytic transfer hydrogenation of biomass-derived carbonyl compounds and the Cu-based catalyst for selective oxidation of alcohols into aldehydes. Different depolymerized components contributed differently to the activity of the catalyst, and the solvents during the preparation process could also influence the activity of the catalyst. The depolymerized components and the solvents influenced the activities of the Zr-based catalyst mainly via changing the Zr contents, the microenvironment of Zr4+, and the specific areas of the catalyst.

15.
Acta Chim Slov ; 68(1): 205-211, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34057513

RESUMEN

In this paper, we explored the synthesis of benzimidazole by the reaction of DMF and o-phenylenediamine. In the process of catalyst screening, we found that 4-amino-3-hydroxybenzoic acid, benzoic acid, and benzene-1,3,5-tricarboxylic acid could catalyze the reaction. Moreover, the calcium 4-amino-3-hydroxybenzoate and CO2 could more effectively catalyze the reaction, the synergistic effect of CO2 and 4-amino-3-hydroxybenzoic acid calcium salt can increase the yield of benzimidazole from 28% to 94%.

16.
Front Oncol ; 11: 616390, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791206

RESUMEN

Gastric cancer (GC) is a common and invasive malignancy, which lacks effective treatment and is the third main reason of cancer death. Metabolic reprogramming is one of the main reasons that GC is difficult to treat in various environments. Particularly, abnormal glycolytic activity is the most common way of metabolism reprogramming in cancer cells. Numerous studies have shown that microRNAs play important roles in reprogramming glucose metabolism. Here, we found a microRNA-miR-365a-3p, was significantly downregulated in GC according to bioinformatics analysis. Low expression of miR-365a-3p correlated with poor prognosis of GC patients. Overexpression of miR-365a-3p in GC cells significantly inhibited cell proliferation by inducing cell cycle arrest at G1 phase. Notably, miR-365a-3p induced downregulation of HELLS through binding to its 3' untranslated region (UTR). Additionally, we found that miR-365a-3p suppressed aerobic glycolysis by inhibiting HELLS/GLUT1 axis. Lastly, we shown that overexpression of miR-365a-3p significantly inhibited tumor growth in nude mice. Conversely, Reconstituted the expression of HELLS rescued the suppressive effects of miR-365a-3p. Our data collectively indicated that miR-365a-3p functioned as a tumor suppressor in GC through downregulating HELLS. Therefore, targeting of the novel miR-365a-3p/HELLS axis could be a potentially effective therapeutic approach for GC.

17.
Methods Appl Fluoresc ; 9(2)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33735838

RESUMEN

A new Aluminum metal-organic frameworks(Al-MOF) based on tricarboxylate ligands(L){L = 2,2',2'-([1,3,5]-triazine-2,4,6-triimino)tribenzoic acid)} has been designed and synthesized. It can be served as a platform of multi-responsive fluorescence sensor for Fe3+, Sr2+and SiO32-in water, which is mainly due to the significant enhancement effect of these ions on the fluorescence intensity of Al-MOF. Especially, Fe3+ions are rarely able to induce MOFs fluorescence enhancement. The limit of detection for three kinds of ions is 6.62* 10-6M, 5.37* 10-6M, 6.85* 10-10M respectively. Meanwhile, It can also be used as a multi-response fluorescence probe to detect toluene in DMF solution, limit of detection is 9.16* 10-3M respectively. The structure of Al-MOF was characterized by FTIR,1H NMR, SEM, TAG, PXRD and element analysis. The PXRD showed that the structure of Al-MOF remained the high water stability and pH stability. The application of water samples and vegetables showed that Al-MOF had high sensitive detection for Fe3+ions.

18.
J Oncol ; 2021: 1328444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003256

RESUMEN

OBJECTIVE: N6-Methyladenosine (m6A) is the most prevalent RNA epigenetic modulation in eukaryotic cells, which serves a critical role in diverse physiological processes. Emerging evidences indicate the prognostic significance of m6A regulator ZC3H13 in hepatocellular carcinoma (HCC). Herein, this study was conducted for revealing biological functions and mechanisms of ZC3H13 in HCC. METHODS: Expression of ZC3H13 was examined in collected HCC and normal tissues, and its prognostic significance was investigated in a public database. Gain/loss of functional assays were presented for defining the roles of ZC3H13 in HCC progression. The specific interactions of ZC3H13 with PKM2 were validated in HCC cells via mRNA stability, RNA immunoprecipitation, and luciferase reporter and MeRIP-qPCR assays. Moreover, rescue experiments were carried out for uncovering the mechanisms. RESULTS: ZC3H13 expression was downregulated in HCC, and its loss was in relation to dismal survival outcomes. Functionally, overexpressed ZC3H13 suppressed proliferation, migration, and invasion and elevated apoptotic levels of HCC cells. Moreover, ZC3H13 overexpression sensitized to cisplatin and weakened metabolism reprogramming of HCC cells. Mechanically, ZC3H13-induced m6A modified patterns substantially abolished PKM2 mRNA stability. ZC3H13 facilitated malignant behaviors of HCC cells through PKM2-dependent glycolytic signaling. CONCLUSION: Collectively, ZC3H13 suppressed the progression of HCC through m6A-PKM2-mediated glycolysis and sensitized HCC cells to cisplatin, which offered a fresh insight into HCC therapy.

19.
Aging Dis ; 11(4): 927-945, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32765955

RESUMEN

Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have many more functions and to be much more abundant in living organisms. The increasing evidence of sirtuins in the field of ageing and age-related diseases indicates that they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. Here, we summarize some of the recent discoveries in sirtuin biology that clearly implicate the functions of sirtuins in the regulation of aging and age-related diseases. Furthermore, human sirtuins are considered promising therapeutic targets for anti-aging and ageing-related diseases and have attracted interest in scientific communities to develop small molecule activators or drugs to ameliorate a wide range of ageing disorders. In this review, we also summarize the discovery and development status of sirtuin-targeted drug and further discuss the potential medical strategies of sirtuins in delaying aging and treating age-related diseases.

20.
Chemosphere ; 260: 127399, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32668362

RESUMEN

There is increasingly concern that PM2.5 constituents play a significant role in PM2.5-related cardiovascular outcomes. However, little is known about the associations between specific constituents of PM2.5 and risk for cardiovascular health. To evaluate the exposure to specific chemicals of PM2.5 from various sources and their cardiac effects, a longitudinal investigation was conducted with four repeated measurements of elderly participants' HRV and PM2.5 species in urban Beijing. Multiple chemicals in PM2.5 (metals, ions and PAHs) were characterized for PM2.5 source apportionment and personalized exposure assessment. Five sources were finally identified with specific chemicals as the indicators: oil combustion (1.1%, V & PAHs), secondary particle (11.3%, SO42- & NO3-), vehicle emission (1.2%, Pd), construction dust (28.7%, Mg & Ca), and coal combustion (57.7%, Se & As). As observed, each IQR increase in exposure to oil combustion (V), vehicle emission (Pd), and coal combustion (Se) significantly decreased rMSSD by 13.1% (95% CI: -25.3%, -1.0%), 27.4% (95% CI: -42.9%, -7.6%) and 24.7% (95% CI: -39.2%, -6.9%), respectively, while those of PM2.5 mass with decreases of rMSSD by 11.1% (95% CI: -19.6%, -1.9%) at lag 0. Elevated exposures to specific sources/constituents of PM2.5 disrupt cardiac autonomic function in elderly and have more adverse effects than PM2.5 mass. In the stratified analysis, medication and gender modify the associations of specific chemicals from variable sources with HRV. The findings of this study provide evidence on the roles of influential constituents of ambient air PM2.5 and their sources in terms of their adverse cardiovascular health effects.


Asunto(s)
Contaminantes Atmosféricos/análisis , Enfermedad Coronaria/epidemiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Material Particulado/análisis , Anciano , Beijing/epidemiología , Carbón Mineral , Polvo/análisis , Monitoreo del Ambiente , Femenino , Frecuencia Cardíaca , Humanos , Emisiones de Vehículos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...