Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(22): e202403695, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38436549

RESUMEN

Aqueous zinc ion batteries (AZIBs) show a great potential for next-generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone-pair-electrons and zincophilic sites is firstly introduced to achieve long-term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de-solvation of the solvated Zn2+ owing to the orientation polarization with regularly-changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically-adsorbed Tris. Therefore, an improved Zn2+-transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra-long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications.

2.
Angew Chem Int Ed Engl ; 62(11): e202217458, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36640120

RESUMEN

Constructing efficient artificial solid electrolyte interface (SEI) film is extremely vital for the practical application of lithium metal batteries. Herein, a dense artificial SEI film, in which lithiophilic Zn/Lix Zny are uniformly but nonconsecutively dispersed in the consecutive Li+ -conductors of Lix SiOy , Li2 O and LiOH, is constructed via the in situ reaction of layered zinc silicate nanosheets and Li. The consecutive Li+ -conductors can promote the desolvation process of solvated-Li+ and regulate the transfer of lithium ions. The nonconsecutive lithiophilic metals are polarized by the internal electric field to boost the transfer of lithium ions, and lower the nucleation barrier. Therefore, a low polarization of ≈50 mV for 750 h at 2.0 mA cm-2 in symmetric cells, and a high capacity retention of 99.2 % in full cells with a high lithium iron phosphate areal loading of ≈13 mg cm-2 are achieved. This work offers new sights to develop advanced alkali metal anodes for efficient energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...