Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nutr Metab Cardiovasc Dis ; 34(6): 1571-1580, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38418351

RESUMEN

BACKGROUND AND AIM: The present study aimed to investigate whether the mitochondrial KATP channel contributes to angiotensin II (Ang II)-induced vascular dysfunction, the development of hypertension, and atherosclerosis. METHODS AND RESULTS: ApoE (-/-) mice fed a high-fat diet were chronically infused with Ang II for eight weeks and concomitantly treated with losartan (ARB), apocynin, or 5-hydroxy decanoate (5-HD), or 3-methyladenine (3-MA). Systolic blood pressure was measured, and pathological changes of aortic or liver tissue were observed. Nitric oxide (NO), superoxide dismutase 2 (SOD2) levels and vasorelaxation rate were measured, and protein and mRNA expressions were examined by western blot and RT-PCR. Ang II-induced development of hypertension was suppressed not only by ARB, and apocynin but also by 5-HD or 3-MA. Ang II infusion decreased aortic NO production and relaxation, as well as SOD2 activity in liver, which were improved by all treatments. In addition, Ang II-induced activation of autophagy was suppressed by 5-HD in aortic tissue, furthermore, Ang II increases the atherosclerotic index in plasma and exacerbates the development of atherosclerosis by increases of fat deposition in the aorta and liver. Lipid metabolism-related mRNA expressions (LXR-α, LDLR, SRBI, Acca, and FASN) were changed by Ang II. Similarly, not only ARB, and apocynin, but also 5-HD and 3-MA suppressed Ang II-induced these changes. CONCLUSIONS: Our present findings evidence that mitochondrial KATP channel-mediated autophagy contributes to Ang II-induced vascular dysfunction, development of hypertension, and atherosclerosis.


Asunto(s)
Angiotensina II , Aterosclerosis , Autofagia , Hipertensión , Óxido Nítrico , Superóxido Dismutasa , Animales , Autofagia/efectos de los fármacos , Masculino , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Hipertensión/fisiopatología , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/patología , Óxido Nítrico/metabolismo , Aterosclerosis/inducido químicamente , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/fisiopatología , Ratones Noqueados para ApoE , Ratones Endogámicos C57BL , Aorta/efectos de los fármacos , Aorta/patología , Aorta/metabolismo , Aorta/fisiopatología , Presión Sanguínea/efectos de los fármacos , Ratones , Modelos Animales de Enfermedad , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Dieta Alta en Grasa , Canales de Potasio
2.
BMC Complement Med Ther ; 22(1): 147, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35643519

RESUMEN

AIMS: Gao-Zi-Yao has long been a unique way for treating various diseases. The present study is to explore the effect of Gao-Zi-Yao on learning and memory function in old spontaneous hypertensive rats (SHR) and its possible mechanism. METHOD: Male old SHR were received different doses of Gao-Zi-Yao for 4 weeks. Systolic blood pressure (SBP) and heart rate were monitored. Serum levels of nitric oxide (NO), interleukin (IL)-1ß, IL-2, and tumor necrotic factor (TNF)-α were measured. Morris water maze was performed to test the learning and memory function of the rats. Number of neurons in hippocampus was counted by Nissl staining. Western blot was applied to detect the expressions of learning and memory function related proteins, N-methyl-d-aspartate receptor 2B (NMDAR 2B), glutamate receptor 1 (GluR1), phosphorylated-calmodulin-dependent protein kinase II (p-CaMK II), and phosphorylated-cAMP responsive element-binding protein (p-CREB) in rat hippocampus. RESULTS: Data showed that Gao-Zi-Yao reduced SBP in old SHR, elevated NO level, and suppressed levels of IL-1ß, IL-2, TNF-α. The results of Morris water maze experiment showed that Gao-Zi-Yao dose-dependently improved learning and memory function. Number of neurons in the hippocampal dentate gyrus (DG) region of the old SHR was increased by Gao-Zi-Yao treatment. In addition, Gao-Zi-Yao elevated the protein expressions of NMDAR 2B, GluR1, p-CaMK II, and p-CREB in hippocampus. CONCLUSION: Gao-Zi-Yao decreases SBP and improves the learning and memory function of the old SHR by regulation of oxidative stress, inflammatory factors and neuron number in hippocampal DG area and the expression of learning and memory function related proteins.


Asunto(s)
Interleucina-2 , Memoria , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/farmacología , Hipocampo , Interleucina-2/metabolismo , Interleucina-2/farmacología , Aprendizaje , Masculino , Ratas
3.
Biomed Pharmacother ; 131: 110739, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32932045

RESUMEN

AIM: The present study aims to investigate the antihypertensive effect and the underlying mechanism of GAO-ZI-YAO, one of the traditional Chinese medicines, in elderly spontaneous hypertensive rats (SHR). METHODS: 12-month-old male SHRs were randomly divided into five groups on the basis of treatment with different doses of GAO-ZI-YAO or angiotensin II receptor-1 blocker (ARB, Irbesartan) for four weeks. Systolic blood pressure (SBP), and serum levels of nitric oxide (NO), endothelin-1 (ET-1), angiotensin II (Ang II), vascular endothelial growth factor (VEGF), interleukin (IL)-1ß, IL-2, IL-6, and tumor necrotic factor (TNF)-α were measured. The pathological changes of ventricular muscle and thoracic aorta were observed by hematoxylin-eosin staining (H&E). RESULTS: GAO-ZI-YAO treatment reduced SBP in a dose-dependent manner accompanied by the inhibition of the development of cardiovascular remodeling. Although GAO-ZI-YAO treatment markedly increased serum levels of NO and suppressed serum levels of Ang II, this medicine did not affect the serum levels of ET-1 and VEGF. In addition, GAO-ZI-YAO also inhibited inflammatory response parameters (inflammatory cell infiltration in cardiac tissues and serum levels of IL-1ß, IL-2, IL-6, and TNF-α) in a dose-dependent manner. CONCLUSION: GAO-ZI-YAO exerts antihypertensive and anti-cardiovascular-remodeling effects in elderly SHR, which may be through regulation of NO, Ang II production, and inflammation.


Asunto(s)
Antihipertensivos/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Hipertensión/tratamiento farmacológico , Medicina Tradicional China , Angiotensina II/sangre , Angiotensina II/fisiología , Animales , Antiinflamatorios/farmacología , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Citocinas/sangre , Medicamentos Herbarios Chinos/farmacología , Endotelina-1/sangre , Endotelina-1/fisiología , Irbesartán/uso terapéutico , Masculino , Óxido Nítrico/sangre , Óxido Nítrico/fisiología , Ratas , Ratas Endogámicas SHR , Factor A de Crecimiento Endotelial Vascular/sangre , Factor A de Crecimiento Endotelial Vascular/fisiología
4.
Biomed Pharmacother ; 111: 1005-1012, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30841413

RESUMEN

AIMS: This study investigated the effect of olprinone on ischemia-reperfusion (I/R) induced cardiac injury, and the underlying mechanism. MAIN METHODS: Male Sprague-Dawley rats were subjected to a 30-min coronary arterial occlusion followed by 24 h reperfusion. After the start of reperfusion, rats were respectively treated with olprinone in three different dosages (0.2, 0.6, 2 mg/kg, intraperitoneal injection, i.p./12 h). Twenty-four hours later, a mean arterial pressure (MAP) heart function analysis system was used to monitor hemodynamic parameters; TTC staining method was used to detect the myocardial infarct size; 24-hour mortality of rats was recorded; western blot was used to detect the protein expressions of Caspase-3, Bax, Bcl-2, Beclin-1 and LC3-II/LC3-I. RESULTS: Cardiac function in I/R group was lower than that in sham group (dp/dt max: 1348.29 ± 266.01 vs. 3333.73 ± 1258.03, -dp/dt max: 1163.23 ± 588.18 vs. 3198.93 ± 1416.00, P < 0.05), which was significantly improved by treatment with high dosage of olprinone (dp/dt max: 1348.29±266.01 vs. 2022.43±493.39, -dp/dt max: 1163.23±588.18 vs. 1784.50±418.92, P < 0.05). The percentage of myocardial infarct size in medium and high dosages of olprinone group was lower than that in I/R group (42.67 ± 2.94, 22.33 ± 3.63 vs. 63.67 ± 5.86, P < 0.05). There was no significant difference in mortality among each group within 24 h. Compared with sham group, the expression of Caspase-3 was significantly up-regulated in I/R group (3.44±0.47-fold of sham, P < 0.05), which was inhibited by medium dosage of olprinone treatment (2.00±0.52-fold of sham, P < 0.05 vs. I/R group); also, expression of Bax was increased compared with sham group (4.06±0.25-fold of sham, P < 0.05), which was markedly inhibited by all dosages of olprinone treatment (low: 2.16±0.61-fold, medium: 2.74±0.66-fold, high 1.65±0.55-fold, P < 0.05 vs. I/R group). Expression of Bcl-2 was increased after I/R (1.17±0.06-fold, P < 0.05), which was further elevated in all dosages of olprinone treatment (low: 1.62 ± 0.13-fold, medium: 1.46 ± 0.13-fold, high: 1.82 ± 0.39-fold, P < 0.05 vs. I/R group). In addition, compared with sham group, the expression of Beclin-1 was up-regulated to 1.44±0.05-fold of sham in I/R group (P < 0.05), which was further increased in low and medium dosages of olprinone group (low: 2.46±0.44-fold, medium: 2.80±0.75-fold, P < 0.05 vs. I/R group). Moreover, expression of LC3-II was elevated in low dosage of olprinone treated group (low: 4.50±0.47-fold, P < 0.05 vs. I/R group). CONCLUSIONS: Olprinone improves the cardiac function in response to myocardial I/R injury by regulation of anti-apoptotic, pro-apoptotic. In addition, autophagic signal pathways may also play a role in olprinone's therapeutic effect.


Asunto(s)
Corazón/efectos de los fármacos , Imidazoles/farmacología , Infarto del Miocardio/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Piridonas/farmacología , Animales , Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley , Reperfusión/métodos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA