Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(44): e2210434119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36282921

RESUMEN

The cJun NH2-terminal kinase (JNK) signaling pathway in the liver promotes systemic changes in metabolism by regulating peroxisome proliferator-activated receptor α (PPARα)-dependent expression of the hepatokine fibroblast growth factor 21 (FGF21). Hepatocyte-specific gene ablation studies demonstrated that the Mapk9 gene (encoding JNK2) plays a key mechanistic role. Mutually exclusive inclusion of exons 7a and 7b yields expression of the isoforms JNK2α and JNK2ß. Here we demonstrate that Fgf21 gene expression and metabolic regulation are primarily regulated by the JNK2α isoform. To identify relevant substrates of JNK2α, we performed a quantitative phosphoproteomic study of livers isolated from control mice, mice with JNK deficiency in hepatocytes, and mice that express only JNK2α or JNK2ß in hepatocytes. We identified the JNK substrate retinoid X receptor α (RXRα) as a protein that exhibited JNK2α-promoted phosphorylation in vivo. RXRα functions as a heterodimeric partner of PPARα and may therefore mediate the effects of JNK2α signaling on Fgf21 expression. To test this hypothesis, we established mice with hepatocyte-specific expression of wild-type or mutated RXRα proteins. We found that the RXRα phosphorylation site Ser260 was required for suppression of Fgf21 gene expression. Collectively, these data establish a JNK-mediated signaling pathway that regulates hepatic Fgf21 expression.


Asunto(s)
Síndrome Metabólico , PPAR alfa , Animales , Ratones , Proteínas Portadoras/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Síndrome Metabólico/metabolismo , Ratones Noqueados , Fosforilación , PPAR alfa/genética , PPAR alfa/metabolismo , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , MAP Quinasa Quinasa 4/metabolismo
2.
Sci Signal ; 14(713): eabf2059, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34905386

RESUMEN

Chronic metabolic inflammation is a key feature of obesity, insulin resistance, and diabetes. Here, we showed that altered regulation of the Ca2+ channel inositol trisphosphate receptor (IP3R) was an adipocyte-intrinsic event involved in the emergence and propagation of inflammatory signaling and the resulting insulin resistance. Inflammation induced by cytokine exposure in vitro or by obesity in vivo led to increases in the abundance and activity of IP3Rs and in the phosphorylation of the Ca2+-dependent kinase CaMKII in adipocytes in a manner dependent on the kinase JNK. In mice, adipocyte-specific loss of IP3R1/2 protected against adipose tissue inflammation and insulin resistance, despite the mice exhibiting substantial diet-induced weight gain. Thus, this work suggests that increased IP3R activity is a key link between obesity, inflammation, and insulin resistance. These data also suggest that approaches to target IP3R-mediated Ca2+ homeostasis in adipocytes may offer new therapeutic opportunities against metabolic diseases, especially because GWAS studies also implicate this locus in human obesity.


Asunto(s)
Adipocitos , Obesidad , Humanos , Inflamación , Transducción de Señal
3.
Genes Dev ; 35(1-2): 133-146, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33334822

RESUMEN

The cJun NH2-terminal kinase (JNK) signaling pathway is activated by metabolic stress and promotes the development of metabolic syndrome, including hyperglycemia, hyperlipidemia, and insulin resistance. This integrated physiological response involves cross-talk between different organs. Here we demonstrate that JNK signaling in adipocytes causes an increased circulating concentration of the hepatokine fibroblast growth factor 21 (FGF21) that regulates systemic metabolism. The mechanism of organ crosstalk is mediated by a feed-forward regulatory loop caused by JNK-regulated FGF21 autocrine signaling in adipocytes that promotes increased expression of the adipokine adiponectin and subsequent hepatic expression of the hormone FGF21. The mechanism of organ cross-talk places circulating adiponectin downstream of autocrine FGF21 expressed by adipocytes and upstream of endocrine FGF21 expressed by hepatocytes. This regulatory loop represents a novel signaling paradigm that connects autocrine and endocrine signaling modes of the same hormone in different tissues.


Asunto(s)
Tejido Adiposo/fisiología , Comunicación Autocrina/genética , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/genética , Transducción de Señal/genética , Adipocitos/metabolismo , Adiponectina/metabolismo , Tejido Adiposo/fisiopatología , Animales , Sistema Endocrino/metabolismo , Metabolismo Energético/genética , Retroalimentación Fisiológica/fisiología , Factores de Crecimiento de Fibroblastos/sangre , Hepatocitos/metabolismo , Resistencia a la Insulina/genética , Hígado/metabolismo , MAP Quinasa Quinasa 4/deficiencia , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Ratones
4.
Proc Natl Acad Sci U S A ; 117(6): 2751-2760, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31980524

RESUMEN

Obesity is associated with a chronic state of low-grade inflammation and progressive tissue infiltration by immune cells and increased expression of inflammatory cytokines. It is established that interleukin 6 (IL6) regulates multiple aspects of metabolism, including glucose disposal, lipolysis, oxidative metabolism, and energy expenditure. IL6 is secreted by many tissues, but the role of individual cell types is unclear. We tested the role of specific cells using a mouse model with conditional expression of the Il6 gene. We found that IL6 derived from adipocytes increased, while IL6 derived from myeloid cells and muscle suppressed, macrophage infiltration of adipose tissue. These opposite actions were associated with a switch of IL6 signaling from a canonical mode (myeloid cells) to a noncanonical trans-signaling mode (adipocytes and muscle) with increased expression of the ADAM10/17 metalloprotease that promotes trans-signaling by the soluble IL6 receptor α. Collectively, these data demonstrate that the source of IL6 production plays a major role in the physiological regulation of metabolism.


Asunto(s)
Tejido Adiposo/inmunología , Interleucina-6/inmunología , Obesidad/inmunología , Proteína ADAM10/genética , Proteína ADAM10/inmunología , Proteína ADAM17/genética , Proteína ADAM17/inmunología , Adipocitos/inmunología , Animales , Femenino , Humanos , Interleucina-6/genética , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Musculares/inmunología , Células Mieloides/inmunología , Obesidad/genética , Especificidad de la Especie
5.
Nat Commun ; 9(1): 3030, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30072727

RESUMEN

Skeletal muscle has a remarkable plasticity to adapt and remodel in response to environmental cues, such as physical exercise. Endurance exercise stimulates improvements in muscle oxidative capacity, while resistance exercise induces muscle growth. Here we show that the c-Jun N-terminal kinase (JNK) is a molecular switch that when active, stimulates muscle fibers to grow, resulting in increased muscle mass. Conversely, when muscle JNK activation is suppressed, an alternative remodeling program is initiated, resulting in smaller, more oxidative muscle fibers, and enhanced aerobic fitness. When muscle is exposed to mechanical stress, JNK initiates muscle growth via phosphorylation of the transcription factor, SMAD2, at specific linker region residues leading to inhibition of the growth suppressor, myostatin. In human skeletal muscle, this JNK/SMAD signaling axis is activated by resistance exercise, but not endurance exercise. We conclude that JNK acts as a key mediator of muscle remodeling during exercise via regulation of myostatin/SMAD signaling.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Músculos/metabolismo , Miostatina/metabolismo , Proteínas Smad/metabolismo , Adulto , Animales , Núcleo Celular/metabolismo , Activación Enzimática , Regulación de la Expresión Génica , Células HEK293 , Humanos , Hipertrofia , Integrasas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fosforilación , Condicionamiento Físico Animal , Resistencia Física , Transporte de Proteínas , Transducción de Señal , Proteínas Smad/antagonistas & inhibidores
6.
FASEB J ; 32(4): 2292-2304, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29242277

RESUMEN

Obesity-mediated inflammation is a major cause of insulin resistance, and macrophages play an important role in this process. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum chaperone that modulates unfolded protein response (UPR), and mice with GRP78 heterozygosity were resistant to diet-induced obesity. Here, we show that mice with macrophage-selective ablation of GRP78 (Lyz- GRP78-/-) are protected from skeletal muscle insulin resistance without changes in obesity compared with wild-type mice after 9 wk of high-fat diet. GRP78-deficient macrophages demonstrated adapted UPR with up-regulation of activating transcription factor (ATF)-4 and M2-polarization markers. Diet-induced adipose tissue inflammation was reduced, and bone marrow-derived macrophages from Lyz- GRP78-/- mice demonstrated a selective increase in IL-6 expression. Serum IL-13 levels were elevated by >4-fold in Lyz- GRP78-/- mice, and IL-6 stimulated the myocyte expression of IL-13 and IL-13 receptor. Lastly, recombinant IL-13 acutely increased glucose metabolism in Lyz- GRP78-/- mice. Taken together, our data indicate that GRP78 deficiency activates UPR by increasing ATF-4, and promotes M2-polarization of macrophages with a selective increase in IL-6 secretion. Macrophage-derived IL-6 stimulates the myocyte expression of IL-13 and regulates muscle glucose metabolism in a paracrine manner. Thus, our findings identify a novel crosstalk between macrophages and skeletal muscle in the modulation of obesity-mediated insulin resistance.-Kim, J. H., Lee, E., Friedline, R. H., Suk, S., Jung, D. Y., Dagdeviren, S., Hu, X., Inashima, K., Noh, H. L., Kwon, J. Y., Nambu, A., Huh, J. R., Han, M. S., Davis, R. J., Lee, A. S., Lee, K. W., Kim, J. K. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Resistencia a la Insulina , Macrófagos/metabolismo , Obesidad/metabolismo , Factor de Transcripción Activador 4/metabolismo , Animales , Línea Celular , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Chaperón BiP del Retículo Endoplásmico , Glucosa/metabolismo , Proteínas de Choque Térmico/genética , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Musculares/metabolismo , Obesidad/etiología , Respuesta de Proteína Desplegada
7.
Elife ; 52016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27635635

RESUMEN

Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia.


Asunto(s)
Tejido Adiposo/fisiología , Empalme Alternativo , Antígenos de Neoplasias/análisis , Proteínas de Unión al ARN/análisis , Termogénesis , Animales , Antígenos de Neoplasias/genética , Biología Computacional , Hiperglucemia , Ratones Endogámicos C57BL , Ratones Noqueados , Antígeno Ventral Neuro-Oncológico , Obesidad/fisiopatología , Proteínas de Unión al ARN/genética
8.
Cell Rep ; 15(1): 19-26, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27052181

RESUMEN

The cJun NH2-terminal kinase (JNK) signaling pathway is required for the development of hepatitis and hepatocellular carcinoma. A role for JNK in liver parenchymal cells has been proposed, but more recent studies have implicated non-parenchymal liver cells as the relevant site of JNK signaling. Here, we tested the hypothesis that myeloid cells mediate this function of JNK. We show that mice with myeloid cell-specific JNK deficiency exhibit reduced hepatic inflammation and suppression of both hepatitis and hepatocellular carcinoma. These data identify myeloid cells as a site of pro-inflammatory signaling by JNK that can promote liver pathology. Targeting myeloid cells with a drug that inhibits JNK may therefore provide therapeutic benefit for the treatment of inflammation-related liver disease.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Hepatitis/metabolismo , Neoplasias Hepáticas/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Células Mieloides/metabolismo , Animales , Inflamación/metabolismo , MAP Quinasa Quinasa 4/genética , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Cell ; 160(4): 745-758, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25662011

RESUMEN

Impaired insulin-mediated suppression of hepatic glucose production (HGP) plays a major role in the pathogenesis of type 2 diabetes (T2D), yet the molecular mechanism by which this occurs remains unknown. Using a novel in vivo metabolomics approach, we show that the major mechanism by which insulin suppresses HGP is through reductions in hepatic acetyl CoA by suppression of lipolysis in white adipose tissue (WAT) leading to reductions in pyruvate carboxylase flux. This mechanism was confirmed in mice and rats with genetic ablation of insulin signaling and mice lacking adipose triglyceride lipase. Insulin's ability to suppress hepatic acetyl CoA, PC activity, and lipolysis was lost in high-fat-fed rats, a phenomenon reversible by IL-6 neutralization and inducible by IL-6 infusion. Taken together, these data identify WAT-derived hepatic acetyl CoA as the main regulator of HGP by insulin and link it to inflammation-induced hepatic insulin resistance associated with obesity and T2D.


Asunto(s)
Acetilcoenzima A/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Paniculitis/metabolismo , Tejido Adiposo Blanco/química , Adolescente , Animales , Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa , Glucosa/metabolismo , Humanos , Hiperglucemia , Interleucina-6/análisis , Lipólisis , Masculino , Ratones , Obesidad/metabolismo , Ratas Sprague-Dawley
10.
Cell Rep ; 5(1): 259-70, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24095730

RESUMEN

Diet-induced obesity (DIO) predisposes individuals to insulin resistance, and adipose tissue has a major role in the disease. Insulin resistance can be induced in cultured adipocytes by a variety of treatments, but what aspects of the in vivo responses are captured by these models remains unknown. We use global RNA sequencing to investigate changes induced by TNF-α, hypoxia, dexamethasone, high insulin, and a combination of TNF-α and hypoxia, comparing the results to the changes in white adipose tissue from DIO mice. We found that different in vitro models capture distinct features of DIO adipose insulin resistance, and a combined treatment of TNF-α and hypoxia is most able to mimic the in vivo changes. Using genome-wide DNase I hypersensitivity followed by sequencing, we further examined the transcriptional regulation of TNF-α-induced insulin resistance, and we found that C/EPBß is a potential key regulator of adipose insulin resistance.


Asunto(s)
Tejido Adiposo/metabolismo , Resistencia a la Insulina/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
11.
J Biol Chem ; 288(14): 9957-9970, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23426369

RESUMEN

The enzyme acyl-CoA synthetase 1 (ACSL1) is induced by peroxisome proliferator-activated receptor α (PPARα) and PPARγ in insulin target tissues, such as skeletal muscle and adipose tissue, and plays an important role in ß-oxidation in these tissues. In macrophages, however, ACSL1 mediates inflammatory effects without significant effects on ß-oxidation. Thus, the function of ACSL1 varies in different tissues. We therefore investigated the signals and signal transduction pathways resulting in ACSL1 induction in macrophages as well as the consequences of ACSL1 deficiency for phospholipid turnover in LPS-activated macrophages. LPS, Gram-negative bacteria, IFN-γ, and TNFα all induce ACSL1 expression in macrophages, whereas PPAR agonists do not. LPS-induced ACSL1 expression is dependent on Toll-like receptor 4 (TLR4) and its adaptor protein TRIF (Toll-like receptor adaptor molecule 1) but does not require the MyD88 (myeloid differentiation primary response gene 88) arm of TLR4 signaling; nor does it require STAT1 (signal transducer and activator of transcription 1) for maximal induction. Furthermore, ACSL1 deletion attenuates phospholipid turnover in LPS-stimulated macrophages. Thus, the regulation and biological function of ACSL1 in macrophages differ markedly from that in insulin target tissues. These results suggest that ACSL1 may have an important role in the innate immune response. Further, these findings illustrate an interesting paradigm in which the same enzyme, ACSL1, confers distinct biological effects in different cell types, and these disparate functions are paralleled by differences in the pathways that regulate its expression.


Asunto(s)
Coenzima A Ligasas/metabolismo , Bacterias Gramnegativas/metabolismo , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Fosfolípidos/metabolismo , Animales , Células de la Médula Ósea/citología , Femenino , Inmunidad Innata , Interferón gamma/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Macrófagos/citología , Macrófagos Peritoneales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Transducción de Señal
12.
Science ; 339(6116): 218-22, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23223452

RESUMEN

The cJun NH(2)-terminal kinase (JNK) signaling pathway contributes to inflammation and plays a key role in the metabolic response to obesity, including insulin resistance. Macrophages are implicated in this process. To test the role of JNK, we established mice with selective JNK deficiency in macrophages. We report that feeding a high-fat diet to control and JNK-deficient mice caused similar obesity, but only mice with JNK-deficient macrophages remained insulin-sensitive. The protection of mice with macrophage-specific JNK deficiency against insulin resistance was associated with reduced tissue infiltration by macrophages. Immunophenotyping demonstrated that JNK was required for pro-inflammatory macrophage polarization. These studies demonstrate that JNK in macrophages is required for the establishment of obesity-induced insulin resistance and inflammation.


Asunto(s)
Inflamación/fisiopatología , Resistencia a la Insulina , Macrófagos/enzimología , Macrófagos/inmunología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Obesidad/fisiopatología , Tejido Adiposo/inmunología , Tejido Adiposo/patología , Animales , Dieta Alta en Grasa , Técnica de Clampeo de la Glucosa , Inmunofenotipificación , Inflamación/inmunología , Islotes Pancreáticos/patología , Sistema de Señalización de MAP Quinasas , Activación de Macrófagos , Macrófagos/fisiología , Ratones , Proteína Quinasa 8 Activada por Mitógenos/deficiencia , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/deficiencia , Proteína Quinasa 9 Activada por Mitógenos/genética , Obesidad/inmunología
13.
J Lipid Res ; 52(6): 1234-1246, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21447485

RESUMEN

The mechanism of FFA-induced insulin resistance is not fully understood. We have searched for effector molecules(s) in FFA-induced insulin resistance. Palmitic acid (PA) but not oleic acid (OA) induced insulin resistance in L6 myotubes through C-Jun N-terminal kinase (JNK) and insulin receptor substrate 1 (IRS-1) Ser307 phosphorylation. Inhibitors of ceramide synthesis did not block insulin resistance by PA. However, inhibition of the conversion of PA to lysophosphatidylcholine (LPC) by calcium-independent phospholipase A2 (iPLA2) inhibitors, such as bromoenol lactone (BEL) or palmitoyl trifluoromethyl ketone (PACOCF3), prevented insulin resistance by PA. iPLA2 inhibitors or iPLA2 small interfering RNA (siRNA) attenuated JNK or IRS-1 Ser307 phosphorylation by PA. PA treatment increased LPC content, which was reversed by iPLA2 inhibitors or iPLA2 siRNA. The intracellular DAG level was increased by iPLA2 inhibitors, despite ameliorated insulin resistance. Pertussis toxin (PTX), which inhibits LPC action through the G-protein coupled receptor (GPCR)/Gα(i), reversed insulin resistance by PA. BEL administration ameliorated insulin resistance and diabetes in db/db mice. JNK and IRS-1Ser307 phosphorylation in the liver and muscle of db/db mice was attenuated by BEL. LPC content was increased in the liver and muscle of db/db mice, which was suppressed by BEL. These findings implicate LPC as an important lipid intermediate that links saturated fatty acids to insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hígado/metabolismo , Lisofosfatidilcolinas , Ácido Palmítico , Fosfolipasas A2 Calcio-Independiente/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Proteínas Sanguíneas/farmacología , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Silenciador del Gen , Glucosa/metabolismo , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Hígado/patología , Lisofosfatidilcolinas/análisis , Lisofosfatidilcolinas/metabolismo , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas , Naftalenos/farmacología , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Toxina del Pertussis/farmacología , Fosfolipasas A2 Calcio-Independiente/antagonistas & inhibidores , Fosforilación/efectos de los fármacos , Pironas/farmacología , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
14.
Diabetes ; 58(2): 329-36, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19171749

RESUMEN

OBJECTIVE: Imatinib has been reported to induce regression of type 2 diabetes in chronic leukemia patients. However, the mechanism of diabetes amelioration by imatinib is unknown, and it is uncertain whether imatinib has effects on type 2 diabetes itself without other confounding diseases like leukemia. We studied the effect of imatinib on diabetes in db/db mice and investigated possible mechanism's underlying improved glycemic control by imatinib. RESEARCH DESIGN AND METHODS: Glucose tolerance and insulin tolerance tests were done after daily intraperitoneal injection of 25 mg/kg imatinib into db/db and C57BL/6 mice for 4 weeks. Insulin signaling and endoplasmic reticulum stress responses were studied by Western blotting. beta-Cell mass and apoptotic beta-cell number were determined by combined terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining and insulin immunohistochemistry. The in vitro effect of imatinib was studied using HepG2 cells. RESULTS: Imatinib induced remission of diabetes in db/db mice and amelioration of insulin resistance. Expression of endoplasmic reticulum stress markers in the liver and adipose tissues of db/db mice, such as phospho-PERK, phospho-eIF2alpha, TRB3, CHOP, and phospho-c-Jun NH(2)-terminal kinase, was reduced by imatinib. Insulin receptor substrate-1 tyrosine phosphorylation and Akt phosphorylation after insulin administration were improved by imatinib. Serum aminotransferase levels and hepatic triglyceride contents were decreased by imatinib. Pancreatic beta-cell mass was increased by imatinib, accompanied by decreased TUNEL(+) beta-cell and increased BrdU(+) beta-cell numbers. Imatinib attenuated endoplasmic reticulum stress in hepatoma cells in vitro. CONCLUSIONS: Imatinib ameliorated endoplasmic reticulum stress and induced remission of diabetes in db/db mice. Imatinib or related compounds could be used as therapeutic agents against type 2 diabetes and metabolic syndrome.


Asunto(s)
Diabetes Mellitus Tipo 2/terapia , Retículo Endoplásmico/efectos de los fármacos , Piperazinas/farmacología , Pirimidinas/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Benzamidas , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplásmico/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Mesilato de Imatinib , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Resistencia a la Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Inhibidores de Proteínas Quinasas/farmacología , Inducción de Remisión , Factor de Transcripción CHOP/metabolismo
15.
Cell Metab ; 8(4): 318-24, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18840362

RESUMEN

Autophagy is a cellular degradation-recycling system for aggregated proteins and damaged organelles. Although dysregulated autophagy is implicated in various diseases including neurodegeneration, its role in pancreatic beta cells and glucose homeostasis has not been described. We produced mice with beta cell-specific deletion of Atg7 (autophagy-related 7). Atg7 mutant mice showed impaired glucose tolerance and decreased serum insulin level. beta cell mass and pancreatic insulin content were reduced because of increased apoptosis and decreased proliferation of beta cells. Physiological studies showed reduced basal and glucose-stimulated insulin secretion and impaired glucose-induced cytosolic Ca2+ transients in autophagy-deficient beta cells. Morphologic analysis revealed accumulation of ubiquitinated protein aggregates colocalized with p62, which was accompanied by mitochondrial swelling, endoplasmic reticulum distension, and vacuolar changes in beta cells. These results suggest that autophagy is necessary to maintain structure, mass and function of pancreatic beta cells, and its impairment causes insulin deficiency and hyperglycemia because of abnormal turnover and function of cellular organelles.


Asunto(s)
Autofagia/fisiología , Hiperglucemia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Animales , Proteína 7 Relacionada con la Autofagia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Glucosa/metabolismo , Hiperglucemia/metabolismo , Hiperglucemia/patología , Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Ubiquitina/metabolismo
16.
J Lipid Res ; 49(1): 84-97, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17951222

RESUMEN

The pathogenesis of nonalcoholic steatohepatitis (NASH) is unclear, despite epidemiological data implicating FFAs. We studied the pathogenesis of NASH using lipoapoptosis models. Palmitic acid (PA) induced classical apoptosis of hepatocytes. PA-induced lipoapoptosis was inhibited by acyl-CoA synthetase inhibitor but not by ceramide synthesis inhibitors, suggesting that conversion products other than ceramide are involved. Phospholipase A(2) (PLA(2)) inhibitors blocked PA-induced hepatocyte death, suggesting an important role for PLA(2) and its product lysophosphatidylcholine (LPC). Small interfering RNA for Ca(2+)-independent phospholipase A(2) (iPLA(2)) inhibited the lipoapoptosis of hepatocytes. PA increased LPC content, which was reversed by iPLA(2) inhibitors. Pertussis toxin or dominant-negative Galpha(i) mutant inhibited hepatocyte death by PA or LPC acting through G-protein-coupled receptor (GPCR)/Galpha(i). PA decreased cardiolipin content and induced mitochondrial potential loss and cytochrome c translocation. Oleic acid inhibited PA-induced hepatocyte death by diverting PA to triglyceride and decreasing LPC content, suggesting that FFAs lead to steatosis or lipoapoptosis according to the abundance of saturated/unsaturated FFAs. LPC administration induced hepatitis in vivo. LPC content was increased in the liver specimens from NASH patients. These results demonstrate that LPC is a death effector in the lipoapoptosis of hepatocytes and suggest potential therapeutic values of PLA(2) inhibitors or GPCR/Galpha(i) inhibitors in NASH.


Asunto(s)
Apoptosis , Hepatocitos/citología , Hepatocitos/metabolismo , Lisofosfatidilcolinas/metabolismo , Fosfolipasas A2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Citocromos c/metabolismo , Inhibidores Enzimáticos/farmacología , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hepatocitos/efectos de los fármacos , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Ácido Oléico/farmacología , Ácido Palmítico/farmacología , ARN Interferente Pequeño/metabolismo
17.
Immunity ; 27(2): 321-33, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17707128

RESUMEN

Although it is established that defective clearance and, hence, increased accumulation of apoptotic cells can lead to autoimmunity, the mechanism by which this occurs remains elusive. Here, we observed that apoptotic cells undergoing secondary necrosis but not intact apoptotic cells provoked substantial immune responses, which were mediated through the toll-like receptor 2 (TLR2) pathway. The development of autoimmune diabetes was markedly inhibited in Tlr2(-/-) mice but not in Tlr4(-/-) mice, showing that TLR2 plays an important role in the initiation of the disease. Apoptotic beta-cell injury could stimulate the priming of diabetogenic T cells through a TLR2-dependent, but TLR4-independent, activation of antigen-presenting cells. These findings suggest that beta-cell death and its sensing via TLR2 may be an initial event for the stimulation of antigen-presenting cells and development of autoimmune diabetes.


Asunto(s)
Apoptosis , Autoinmunidad/genética , Diabetes Mellitus Tipo 1/genética , Células Secretoras de Insulina/patología , Receptor Toll-Like 2/fisiología , Animales , Apoptosis/genética , Linfocitos T CD4-Positivos/inmunología , Muerte Celular , Macrófagos/inmunología , Ratones , Ratones Endogámicos , Ratones Mutantes , FN-kappa B/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/fisiología
18.
Proc Natl Acad Sci U S A ; 104(6): 1913-8, 2007 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-17267600

RESUMEN

Whereas NF-kappaB has potent antiapoptotic function in most cell types, it was reported that in pancreatic beta cells it serves a proapoptotic function and may contribute to the pathogenesis of autoimmune type 1 diabetes. To investigate the role of beta cell NF-kappaB in autoimmune diabetes, we produced transgenic mice expressing a nondegradable form of IkappaBalpha in pancreatic beta cells (RIP-mIkappaBalpha mice). beta cells of these mice were more susceptible to killing by TNF-alpha plus IFN-gamma but more resistant to IL-1beta plus IFN-gamma than normal beta cells. Similar results were obtained with beta cells lacking IkappaB kinase beta, a protein kinase required for NF-kappaB activation. Inhibition of beta cell NF-kappaB accelerated the development of autoimmune diabetes in nonobese diabetic mice but had no effect on glucose tolerance or serum insulin in C57BL/6 mice, precluding a nonphysiological effect of transgene expression. Development of diabetes after transfer of diabetogenic CD4(+) T cells was accelerated in RIP-mIkappaBalpha/nonobese diabetic mice and was abrogated by anti-TNF therapy. These results suggest that under conditions that resemble autoimmune type 1 diabetes, the dominant effect of NF-kappaB is prevention of TNF-induced apoptosis. This differs from the proapoptotic function of NF-kappaB in IL-1beta-stimulated beta cells.


Asunto(s)
Apoptosis/fisiología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/prevención & control , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , FN-kappa B/fisiología , Animales , Diabetes Mellitus Tipo 1/patología , Proteínas I-kappa B/biosíntesis , Proteínas I-kappa B/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Inhibidor NF-kappaB alfa , Factor de Necrosis Tumoral alfa/fisiología
19.
Mol Pharmacol ; 69(6): 1871-8, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16540597

RESUMEN

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental pollutant with many toxic effects, including endocrine disruption, reproductive dysfunction, immunotoxicity, liver damage, and cancer. These are mediated by TCDD binding to and activating the aryl hydrocarbon receptor (AhR), a basic helix-loop-helix transcription factor. In this regard, targeting the AhR using novel small molecule inhibitors is an attractive strategy for the development of potential preventive agents. In this study, by screening a chemical library composed of approximately 10,000 compounds, we identified a novel compound, 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191), that potently inhibits TCDD-induced AhR-dependent transcription. In addition, CH-223191 blocked the binding of TCDD to AhR and inhibited TCDD-mediated nuclear translocation and DNA binding of AhR. These inhibitory effects of CH-223191 prevented the expression of cytochrome P450 enzymes, target genes of the AhR. Unlike many known antagonists of AhR, CH-223191 did not have detectable AhR agonist-like activity or estrogenic potency, suggesting that CH-223191 is a specific antagonist of AhR. It is noteworthy that CH-223191 potently prevented TCDD-elicited cytochrome P450 induction, liver toxicity, and wasting syndrome in mice. Taken together, these results demonstrate that this novel compound, CH-223191, may be a useful agent for the study of AhR-mediated signal transduction and the prevention of TCDD-associated pathology.


Asunto(s)
Antídotos/farmacología , Compuestos Azo/farmacología , Citocromo P-450 CYP1A1/antagonistas & inhibidores , Dioxinas/antagonistas & inhibidores , Pirazoles/farmacología , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Animales , Antídotos/química , Compuestos Azo/química , Línea Celular Tumoral , Citocromo P-450 CYP1A1/efectos de los fármacos , Dioxinas/metabolismo , Dioxinas/toxicidad , Evaluación Preclínica de Medicamentos , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos ICR , Transporte de Proteínas/efectos de los fármacos , Pirazoles/química , Receptores de Hidrocarburo de Aril/metabolismo
20.
Biochem Pharmacol ; 66(6): 955-63, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12963482

RESUMEN

Flavonoids are natural polyphenolic compounds that have anti-inflammatory, cytoprotective and anticarcinogenic effects. In this study, we investigated the effects of several flavonoids on nuclear factor-kappa B (NF-kappa B) activation by using luciferase reporter gene assay. Among the flavonoids examined, luteolin showed the most potent inhibition on lipopolysaccharide (LPS)-stimulated NF-kappa B transcriptional activity in Rat-1 fibroblasts. Luteolin did not inhibit either I kappa B alpha degradation or NF-kappa B nuclear translocation, DNA binding or phosphorylation by LPS. However, luteolin prevented LPS-stimulated interaction between the p65 subunit of NF-kappa B and the transcriptional coactivator CBP. In addition, a specific PKA inhibitor that blocked the phosphorylation of CREB and c-Jun by luteolin partially reversed the inhibitory effect of luteolin on NF-kappa B.CBP complex formation and NF-kappa B transcriptional activity by LPS. These data imply that inhibition of NF-kappa B transcriptional activity by luteolin may occur through competition with transcription factors for coactivator that is available in limited amounts. Taken together, this study provides a molecular basis for the understanding of the anti-inflammatory effects of luteolin.


Asunto(s)
Proteínas de Unión al ADN , Fibroblastos/efectos de los fármacos , Flavonoides/farmacología , FN-kappa B/metabolismo , Transcripción Genética/efectos de los fármacos , Factor de Transcripción Activador 1 , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , ADN/efectos de los fármacos , ADN/metabolismo , Interacciones Farmacológicas , Fibroblastos/metabolismo , Proteínas I-kappa B/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos , Lipopolisacáridos/farmacología , Luteolina , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Inhibidor NF-kappaB alfa , Fosforilación/efectos de los fármacos , Ratas , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...