Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702413

RESUMEN

Electrochemomechanical degradation is one of the most common causes of capacity deterioration in high-energy-density cathodes, particularly intercalation-based layered oxides. Here we reveal the presence of rotational stacking faults (RSFs) in layered lithium transition-metal oxides, arising from specific stacking sequences at different angles, and demonstrate their critical role in determining structural/electrochemical stability. Our combined experiments and calculations show that RSFs facilitate oxygen dimerization and transition-metal migration in layered oxides, fostering microcrack nucleation/propagation concurrently with cumulative electrochemomechanical degradation on cycling. We further show that thermal defect annihilation as a potential solution can suppress RSFs, reducing microcracks and enhancing cyclability in lithium-rich layered cathodes. The common but previously overlooked occurrence of RSFs suggests a new synthesis guideline of high-energy-density layered oxide cathodes.

2.
Opt Lett ; 49(3): 658-661, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300083

RESUMEN

Integrated optical modulators (IOMs) are crucial components of on-chip photonic circuits. However, most conventional IOMs are restricted to specific spectral bands. Here, we leveraged the wide transparency window of lithium niobate in conjunction with the two-pulley coupled resonator method. This approach led to the development of a hyperband electro-optic (EO) modulator that operates over an expansive spectral range from 775 to 1550 nm on a single device. The demonstrated EO modulator exhibits half-wave voltage-length products of 0.25, 0.93, and 0.68 V·cm at wavelengths of 1539.50, 969.70, and 775.17 nm, respectively.

3.
Opt Express ; 31(23): 39261-39278, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38018009

RESUMEN

Quantum identity authentication serves as a crucial technology for secure quantum communication, but its security often faces challenges due to quantum hacking of measurement devices. This study introduces a measurement-device-independent mutual quantum identity authentication (MDI MQIA) scheme capable of ensuring secure user authentication, despite the use of measurement devices vulnerable to quantum hacking. To realize the MDI MQIA scheme, we proposed and applied a modified Bell state measurement based on linear optics, enabling the probabilistic measurement of all Bell states. Furthermore, the proposed experimental setup adopted a plug-and-play architecture, thus efficiently establishing the indistinguishability of two photons prepared by the communication members. Finally, we successfully performed a proof-of-principle experimental demonstration of the proposed scheme using a field-deployed fiber, achieving quantum bit error rates of less than 3%.

4.
Front Plant Sci ; 14: 1275438, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023913

RESUMEN

Acidovorax citrulli (Ac) is a causal agent of watermelon bacterial fruit blotch (BFB) disease. Because resistance cultivars/lines have not yet been developed, it is imperative to elucidate Ac's virulence factors and their mechanisms to develop resistant cultivars/lines in different crops, including watermelon. The glucose-6-phosphate isomerase (GPI) is a reversible enzyme in both glycolysis and gluconeogenesis pathways in living organisms. However, the functions of GPI are not characterized in Ac. In this study, we determined the roles of GpiAc (GPI in Ac) by proteomic and phenotypic analyses of the mutant lacking GPI. The mutant displayed significantly reduced virulence to watermelon in two different virulence assays. The mutant's growth patterns were comparable to the wild-type strain in rich medium and M9 with glucose but not with fructose. The comparative proteome analysis markedly identified proteins related to virulence, motility, and cell wall/membrane/envelope. In the mutant, biofilm formation and twitching halo production were reduced. We further demonstrated that the mutant was less tolerant to osmotic stress and lysozyme treatment than the wild-type strain. Interestingly, the tolerance to alkali conditions was remarkably enhanced in the mutant. These results reveal that GpiAc is involved not only in virulence and glycolysis/gluconeogenesis but also in biofilm formation, twitching motility, and tolerance to diverse external stresses suggesting the pleiotropic roles of GpiAc in Ac. Our study provides fundamental and valuable information on the functions of previously uncharacterized glucose 6-phosphate isomerase and its virulence mechanism in Ac.

6.
Ultrasonics ; 134: 107100, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421699

RESUMEN

Focused ultrasound (FUS) therapy has been widely studied for breast cancer treatment due to its potential as a fully non-invasive method to improve cosmetic and oncologic results. However, real-time imaging and monitoring of the therapeutic ultrasound delivered to the target area remain challenges for precision breast cancer therapy. The main objective of this study is to propose and evaluate a novel intelligence-based thermography (IT) method that can monitor and control FUS treatment using thermal imaging with the fusion of artificial intelligence (AI) and advanced heat transfer modeling. In the proposed method, a thermal camera is integrated into FUS system for thermal imaging of the breast surface, and an AI model is employed for the inverse analysis of the surface thermal monitoring, thereby estimating the features of the focal region. This paper presents experimental and computational studies conducted to assess the feasibility and efficiency of IT-guided FUS (ITgFUS). Tissue phantoms, designed to mimic the properties of breast tissue, were used in the experiments to investigate detectability and the impact of temperature rise at the focal region on the tissue surface. Additionally, an AI computational analysis employing an artificial neural network (ANN) and FUS simulation was carried out to provide a quantitative estimation of the temperature rise at the focal region. This estimation was based on the observed temperature profile on the breast model's surface. The results proved that the effects of temperature rise at the focused area could be detected by the thermal images acquired with thermography. Moreover, it was demonstrated that the AI analysis of the surface temperature measurement could result in near real-time monitoring of FUS by quantitative estimation of the temporal and spatial temperature rise profiles at the focal region.


Asunto(s)
Termografía , Terapia por Ultrasonido , Termografía/métodos , Estudios de Factibilidad , Inteligencia Artificial , Terapia por Ultrasonido/métodos , Inteligencia
7.
Plant Pathol J ; 39(3): 235-244, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37291764

RESUMEN

Acidovorax citrulli (Ac) is a phytopathogenic bacterium that causes bacterial fruit blotch (BFB) in cucurbit crops, including watermelon. However, there are no effective methods to control this disease. YggS family pyridoxal phosphate-dependent enzyme acts as a coenzyme in all transamination reactions, but its function in Ac is poorly understood. Therefore, this study uses proteomic and phenotypic analyses to characterize the functions. The Ac strain lacking the YggS family pyridoxal phosphate-dependent enzyme, AcΔyppAc(EV), virulence was wholly eradicated in geminated seed inoculation and leaf infiltration. AcΔyppAc(EV) propagation was inhibited when exposed to L-homoserine but not pyridoxine. Wild-type and mutant growth were comparable in the liquid media but not in the solid media in the minimal condition. The comparative proteomic analysis revealed that YppAc is primarily involved in cell motility and wall/membrane/envelop biogenesis. In addition, AcΔyppAc(EV) reduced biofilm formation and twitching halo production, indicating that YppAc is involved in various cellular mechanisms and possesses pleiotropic effects. Therefore, this identified protein is a potential target for developing an efficient anti-virulence reagent to control BFB.

8.
Adv Mater ; 35(32): e2301631, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37122113

RESUMEN

Halide solid electrolytes have recently emerged as a promising option for cathode-compatible catholytes in solid-state batteries (SSBs), owing to their superior oxidation stability at high voltage and their interfacial stability. However, their day- to month-scale aging at the cathode interface has remained unexplored until now, while its elucidation is indispensable for practical deployment. Herein, the stability of halide solid electrolytes (e.g., Li3 InCl6 ) when used with conventional layered oxide cathodes during extended calendar aging is investigated. It is found that, contrary to their well-known oxidation stability, halide solid electrolytes can be vulnerable to reductive side reactions with oxide cathodes (e.g., LiNi0.8 Co0.1 Mn0.1 O2 ) in the long term. More importantly, the calendar aging at a low state of charge or as-fabricated state causes more significant degradation than at a high state of charge, in contrast to typical lithium-ion batteries, which are more susceptible to high-state-of-charge calendar aging. This unique characteristic of halide-based SSBs is related to the reduction propensity of metal ions in halide solid electrolytes and correlated to the formation of an interphase due to the reductive decomposition triggered by the oxide cathode in a lithiated state. This understanding of the long-term aging properties provides new guidelines for the development of cathode-compatible halide solid electrolytes.

9.
Front Plant Sci ; 13: 1039420, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438092

RESUMEN

Acidovorax citrulli (Ac) is a gram-negative bacterium that causes bacterial fruit blotch (BFB) disease in cucurbit crops including watermelon. However, despite the great economic losses caused by this disease worldwide, Ac-resistant watermelon cultivars have not been developed. Therefore, characterizing the virulence factors/mechanisms of Ac would enable the development of effective control strategies against BFB disease. The 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase (BdpM) is known to participate in the glycolysis and gluconeogenesis pathways. However, the roles of the protein have not been characterized in Ac. To elucidate the functions of BdpmAc (Bdpm in Ac), comparative proteomic analysis and diverse phenotypic assays were conducted using a bdpmAc knockout mutant (bdpmAc:Tn) and a wild-type strain. The virulence of the mutant to watermelon was remarkably reduced in both germinated seed inoculation and leaf infiltration assays. Moreover, the mutant could not grow with fructose or pyruvate as a sole carbon source. However, the growth of the mutant was restored to levels similar to those of the wild-type strain in the presence of both fructose and pyruvate. Comparative proteomic analyses revealed that diverse proteins involved in motility and wall/membrane/envelop biogenesis were differentially abundant. Furthermore, the mutant exhibited decreased biofilm formation and twitching halo size. Interestingly, the mutant exhibited a higher tolerance against osmotic stress. Overall, our findings suggest that BdpmAc affects the virulence, glycolysis/gluconeogenesis, biofilm formation, twitching halo size, and osmotic tolerance of Ac, suggesting that this protein has pleiotropic properties. Collectively, our findings provide fundamental insights into the functions of a previously uncharacterized phosphoglycerate mutase in Ac.

10.
Opt Express ; 30(16): 29461-29471, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299120

RESUMEN

The commercialization of quantum key distribution (QKD), which enables secure communication even in the era of quantum computers, has acquired significant interest. In particular, plug-and-play (PnP) QKD has garnered considerable attention owing to its advantage in system stabilization. However, a PnP QKD system has limitations on miniaturization owing to a bulky storage line (SL) of tens of kilometers. And, the secure key rate is relatively low because Bob transmits the signal pulses only at the dedicated time slots to circumvent backscattering noise. This study proposes a new method that can eliminate the SL by realizing an optical pulse train generator based on an optical cavity structure. Our method allows Alice to generate optical pulse trains herself by duplicating Bob's seed pulse and excludes the need for Bob's strong signal pulses that trigger backscattering noise as much as the conventional PnP QKD. Accordingly, our method can naturally overcome the miniaturization limitation and the slow secure key rate, as the storage line is no longer necessary. We conducted a proof-of-concept experiment using our method and achieved a key generation rate of 1.6×10-3 count/pulse and quantum bit error rate ≤ 5%.

11.
Plant Pathol J ; 38(4): 410-416, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35953061

RESUMEN

Erwinia amylovora, the causal agent of fire-blight disease in apple and pear trees, was first isolated in South Korea in 2015. Although numerous studies, including omics analyses, have been conducted on other strains of E. amylovora, studies on South Korean isolates remain limited. In this study, we conducted a comparative proteomic analysis of the strain TS3128, cultured in three media representing different growth conditions. Proteins related to virulence, type III secretion system, and amylovoran production, were more abundant under minimal conditions than in rich conditions. Additionally, various proteins associated with energy production, carbohydrate metabolism, cell wall/membrane/envelope biogenesis, and ion uptake were identified under minimal conditions. The strain TS3128 expresses these proteins to survive in harsh environments. These findings contribute to understanding the cellular mechanisms driving its adaptations to different environmental conditions and provide proteome profiles as reference for future studies on the virulence and adaptation mechanisms of South Korean strains.

12.
Sci Rep ; 12(1): 13652, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953693

RESUMEN

The heterogeneous catalysts of Pt/transition-metal oxides are typically synthesized through calcination at 500 °C, and Pt nanoparticles are uniformly and highly dispersed when hydrogen peroxide (H2O2) is applied before calcination. The influence of H2O2 on the dispersion and the stability of Pt nanoparticles on titania-incorporated fumed silica (Pt/Ti-FS) supports was examined using X-ray absorption fine structure (XAFS) measurements at the Pt L3 and Ti K edges as well as density functional theory (DFT) calculations. The local structural and chemical properties around Pt and Ti atoms of Pt/Ti-FS with and without H2O2 treatment were monitored using in-situ XAFS during heating from room temperature to 500 °C. XAFS revealed that the Pt nanoparticles of H2O2-Pt/Ti-FS are highly stable and that the Ti atoms of H2O2-Pt/Ti-FS support form into a distorted-anatase TiO2. DFT calculations showed that Pt atoms bond more stably to oxidized-TiO2 surfaces than they do to bare- and reduced-TiO2 surfaces. XAFS measurements and DFT calculations clarified that the presence of extra oxygen atoms due to the H2O2 treatment plays a critical role in the strong bonding of Pt atoms to TiO2 surfaces.

13.
Sci Adv ; 8(30): eabq0153, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35895830

RESUMEN

All-solid-state batteries are a potential game changer in the energy storage market; however, their practical employment has been hampered by premature short circuits caused by the lithium dendritic growth through the solid electrolyte. Here, we demonstrate that a rational layer-by-layer strategy using a lithiophilic and electron-blocking multilayer can substantially enhance the performance/stability of the system by effectively blocking the electron leakage and maintaining low electronic conductivity even at high temperature (60°C) or under high electric field (3 V) while sustaining low interfacial resistance (13.4 ohm cm2). It subsequently results in a homogeneous lithium plating/stripping, thereby aiding in achieving one of the highest critical current densities (~3.1 mA cm-2) at 60°C in a symmetric cell. A full cell paired with a commercial-level cathode exhibits exceptionally long durability (>3000 cycles) and coulombic efficiency (99.96%) at a high current density (2 C; ~1.0 mA cm-2), which records the highest performance among all-solid-state lithium metal batteries reported to date.

14.
Nano Lett ; 22(4): 1672-1679, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35133163

RESUMEN

Engineering a strongly interacting uniform qubit cluster would be a major step toward realizing a scalable quantum system for quantum sensing and a node-based qubit register. For a solid-state system that uses a defect as a qubit, various methods to precisely position defects have been developed, yet the large-scale fabrication of qubits within the strong coupling regime at room temperature continues to be a challenge. In this work, we generate nitrogen vacancy (NV) color centers in diamond with sub-10 nm scale precision using a combination of nanoscale aperture arrays (NAAs) with a high aspect ratio of 10 and a secondary E-beam hole pattern used as an ion-blocking mask. We perform optical and spin measurements on a cluster of NV spins and statistically investigate the effect of the NAAs during an ion-implantation process. We discuss how this technique is effective for constructing a scalable system.

15.
Opt Lett ; 47(23): 6149-6152, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219194

RESUMEN

Controlling the optical coupling between a micro-resonator and waveguide plays a key role in on-chip photonic circuits. Here, we demonstrate a two-point coupled lithium niobate (LN) racetrack micro-resonator that enables us to electro-optically traverse a full set of the zero-, under-, critical-, and over-coupling regimes with minimized disturbance of the intrinsic properties of the resonant mode. The modulation between the zero- and critical-coupling conditions cost a resonant frequency shift of only ∼344.2 MHz and rarely changed the intrinsic quality (Q) factor of 4.6 × 105. Our device is a promising element in on-chip coherent photon storage/retrieval and its applications.

16.
Plant Pathol J ; 37(6): 673-680, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34897258

RESUMEN

Acidovorax citrulli (Ac) is the causative agent of bacterial fruit blotch disease in watermelon. Since resistant cultivars have not yet been developed, the virulence factors/mechanisms of Ac need to be characterized. This study reports the functions of a putative pyridoxal phosphate-dependent aminotransferase (PpdaAc) that transfers amino groups to its substrates and uses pyridoxal phosphate as a coenzyme. It was observed that a ppdaAc knockout mutant had a significantly reduced virulence in watermelon when introduced via germinated-seed inoculation as well as leaf infiltration. Comparative proteomic analysis predicted the cellular mechanisms related to PpdaAc. Apart from causing virulence, the PpdaAc may have significant roles in energy production, cell membrane, motility, chemotaxis, post-translational modifications, and iron-related mechanisms. Therefore, it is postulated that PpdaAc may possess pleiotropic effects. These results provide new insights into the functions of a previously unidentified PpdaAc in Ac.

18.
Nano Lett ; 21(21): 9187-9194, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34677068

RESUMEN

Crystallographic defects such as vacancies and stacking faults engineer electronic band structure at the atomic level and create zero- and two-dimensional quantum structures in crystals. The combination of these point and planar defects can generate a new type of defect complex system. Here, we investigate silicon carbide nanowires that host point defects near stacking faults. These point-planar defect complexes in the nanowire exhibit outstanding optical properties of high-brightness single photons (>360 kcounts/s), a fast recombination time (<1 ns), and a high Debye-Waller factor (>50%). These distinct optical properties of coupled point-planar defects lead to an unusually strong zero-phonon transition, essential for achieving highly efficient quantum interactions between multiple qubits. Our findings can be extended to other defects in various materials and therefore offer a new perspective for engineering defect qubits.

19.
Nat Commun ; 12(1): 5211, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471118

RESUMEN

Quantum metrology can achieve enhanced sensitivity for estimating unknown parameters beyond the standard quantum limit. Recently, multiple-phase estimation exploiting quantum resources has attracted intensive interest for its applications in quantum imaging and sensor networks. For multiple-phase estimation, the amount of enhanced sensitivity is dependent on quantum probe states, and multi-mode N00N states are known to be a key resource for this. However, its experimental demonstration has been missing so far since generating such states is highly challenging. Here, we report generation of multi-mode N00N states and experimental demonstration of quantum enhanced multiple-phase estimation using the multi-mode N00N states. In particular, we show that the quantum Cramer-Rao bound can be saturated using our two-photon four-mode N00N state and measurement scheme using a 4 × 4 multi-mode beam splitter. Our multiple-phase estimation strategy provides a faithful platform to investigate multiple parameter estimation scenarios.

20.
Microbiol Resour Announc ; 10(37): e0069421, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34528814

RESUMEN

Erwinia amylovora causes fire blight, a devastating disease of apples and pears. Here, we report the complete genome sequence and annotation of E. amylovora strain TS3128, which was isolated from Anseong, South Korea, where fire blight first occurred in 2015, using the PacBio RS II system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA